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Abstract

Distributed storage systems (in brief, DSSs) store data on several distributed nodes and are

widely used in file system storage, large database storage, backup file, and cloud storage, etc.

DSSs provide reliable access to data through redundancy spread over individually unreliable

nodes, where the replication scheme and coding mechanism are two widespread techniques for

ensuring reliability. In 2012, Gopalan et al. proposed locally repairable codes (LRCs for short)

to minimize the number of nodes to be downloaded in repairing any node. A code over a finite

alphabet is called LRC (with locality r) if every symbol in the encoding is a function of a small

number (at most r) of other symbols of the codeword. In 2013 Pamies-Juarez et al. introduced

LRCs with multiple repair alternatives, which allows repairing any node with different disjoint

nodes. LRCs with multiple repair alternatives can increase the probability of being able to

perform efficient repairs when there are multiple unavailable nodes (these nodes are failed or

temporarily unavailable).

This paper proposes two large families of LRCs with multiple repair alternatives from Boolean

functions. Each repair set has at most r = 2 symbols, which correspond to an interesting

case in practice. We shall explore Boolean functions selected from the well-known Maiorana-

McFarland class based on partial spreads, respectively. Moreover, we show that the number of

the disjoint repair sets (denoted by t) of our LRCs can be determined entirely by the autocor-

relation spectrum of the corresponding Boolean function. This achievement is obtained thanks

to the relationship between the autocorrelation spectrum of the corresponding Boolean function

and the number of disjoint repairs sets that we establish. Our results give rise LRCs with suit-

able parameters from special Boolean functions (such as bent functions) based on a construction

method introduced by Ding in 2015 for designing linear codes based on the so-called “defining

set” (involving mainly Boolean functions). The approach presented in this article introduces an

interesting connection between LRCs (with multiple repair alternatives) and (the autocorrela-

tion spectrum of) Boolean functions. Notably, it emphasizes a novel role of bent functions for

designing LRCs. This connection has not been pointed out before to the best of our knowledge.
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1 Introduction

The need for highly scalable and reliable extensive data storage systems is due to the fact that

there is explosive growth in data. Distributed storage systems (DSSs) store data on several dis-

tributed nodes and are widely used in file system storage, large database storage, backup file, cloud

storage, etc. The repair problem in DSSs addresses the recovery of the data encoded using erasure

codes such as Reed-Solomon codes, locally repairable codes (LRCs) [9] etc. In recent years, the in-

terest and attention on LRCs have proliferated. Several constructions and related results have been

given (see. e.g. [10, 1, 22, 23]).

A binary linear code C of length n, dimension κ is a κ-dimensional subspace of Fn2 . C is said to

be an [n, κ, d] linear code with minimum Hamming distance d. Linear codes are an important class

of codes in coding theory. They have been extensively studied due to their significant applications

in practical systems. In this paper, we shall focus on (binary) locally repairable codes (LRCs) which

process four parameters by considering the locality r (in addition to those for usual linear codes).

We briefly recall the terminology used in the literature in the context of LRC for distributed storage.

Specifically, an LRC is said to have locality r if the value at any coordinate can be recovered by

accessing at most r other coordinates, and to have availability t if every coordinate can be recovered

from t disjoint repair sets of other coordinates. A code with multiple repair sets (called availability,

see [15, 16] for instance) has the advantage of good parallel repairability, since for the target symbol,

each repair set can be seen as a backup that can be accessed independently. Locally repairable

codes with availability t > 1 have been extensively studied in recent years. An upper bound on

the minimum distance of LRCs was derived in [19]. When such an upper bound is achieved with

equality, the LRC code is optimal. In [20, 21], binary locally repairable codes were constructed by

employing combinatorial structures. Constructions of locally repairable codes with availability t > 1

were proposed in the literature.

In this paper, we present two families of binary LRCs with multiple repair alternatives inspired

by the design method of linear codes from the support set of a Boolean function presented by Ding

in [6, 7]. We show that [n, κ, d] LRCs with r = 2 can be constructed directly from the support set

of a Boolean function, and the minimum distance d, as well as the availability t, depend only on the

Walsh spectrum and the autocorrelation spectrum of the Boolean function. Using this connection,

we firstly give a class of binary LRCs from Boolean functions with Maiorana-McFarland (M-M)

constructions. By analyzing the related cryptographic criteria of the M-M functions, we obtain the

explicit parameters of these LRCs, which leads to a large number of good LRCs with r = 2 and

pre-defined t. Secondly, we provide another construction of LRCs with r = 2 from Boolean functions

based on partial spreads, where the availability t relates to the dimension of the chosen spreads. The

remainder of this extended abstract is organized as follows. In Section 2, we fix our notation and

introduce some background and necessary preliminaries required for the subsequent sections. In

Section 3, we start by recalling, namely, a construction method of binary linear codes from Boolean

functions that we follow and present an important result (Theorem 2) on constructing binary LRCs

from Boolean functions. We next explore some wide families of Boolean functions and investigate

in Section 4 the design of LRCs from Boolean functions with M-M constructions (Subsection 4.1)

and based on partial spreads (Subsection 4.2), respectively.

2 Preliminaries

Given a finite set E, #E will denote its cardinality. Given a real number x, |x| will denote its

absolute value. Given a positive integer n, [n] will denote the set {1, 2, · · · , n}.
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2.1 Boolean functions and related notions

For any positive integer m, we denote by Fm2 the vector space of m-tuples over the finite field

F2 = {0, 1}, and by F2m the finite field of order 2m. For simplicity, we denote by Fm∗2 the set

Fm2 \ {0}, and F∗2m denotes the set F2m \ {0}, where 0 is the all-zero vector in Fm2 . We use + (resp.∑
) to denote the addition (resp. a multiple sum) in Z or in the finite field F2m , and ⊕ (resp.

⊕
) to

denote the addition (resp. a multiple sum) in F2. For simplicity, when there is no ambiguity, we will

use + instead of ⊕. A Boolean function of m variables is a function from Fm2 into F2. If we identify

Fm2 with F2m , it is a mapping from F2m to F. We shall denote by Bm the set of m-variable Boolean

functions. The design of strong symmetric cipher systems requires that the underlying cryptographic

Boolean function meet specific security requirements. Some of the required security criteria can be

measured with the help of the autocorrelation function or using the Walsh transform as a tool. The

Walsh transform of f in Bm at α ∈ F2m is defined by χ̂f (a) =
∑
x∈F2m

(−1)f(x)+Trm1 (ax), where

Trm1 (x) =
m−1∑
i=0

x2i

is the (absolute) trace function from F2m to F2. The multiset constituted by the

values of the Walsh transform is called the Walsh spectrum of f . The autocorrelation function of

a Boolean function f in Bm at a point α ∈ F2m is defined by Af (α) =
∑
x∈F2m

(−1)f(x)+f(x+α).

The multiset constituted by the values of the autocorrelation function is called the autocorrelation

spectrum of f . The well-known Wiener-Khintchine theorem connects the Walsh transform and the

autocorrelation function (see e.g. [2]). A valuable reference on the theory of Boolean functions in

cryptography and coding theory is [3].

2.2 Linear codes, LRC codes and related notions

An [n, κ, d]2 linear code C over F2 is a κ-dimensional subspace of Fn2 with minimum Hamming

distance d, where d = mina,b∈C,a 6=b,dH(a,b) in which dH denotes the Hamming distance between

vectors (called codewords) a = (a1, a2, · · · , an) ∈ C and b = (b1, b2, · · · , bn) ∈ C, i.e., dH(a, b) =

#{1 ≤ i ≤ n : ai 6= bi}. For a given codeword a ∈ C, the Hamming weight wH(a) is defined

as the number of nonzero coordinates. Usually, if the context is clear, we omit the subscript 2

by convention in the sequel (we shall write [n, κ, d] instead of [n, κ, d]2). We introduce the formal

definition of locally repairable codes (LRCs) (see. [8] and also [18]).

Definition 1. A linear code C is a LRC with locality r if for any i ∈ [n], there exists a subset

Ri ⊂ [n]\{i} with #Ri ≤ r such that the i-th symbol ci can be recovered by {cj}j∈Ri . A set Ri is

called a recovery or repair set for ci. Furthermore, if for any i ∈ [n], there are at least t disjoint

repair sets with each set of size at most r symbols, we refer to such a code as an (r, t)-LRC.

In order to maximize the reliability of storage systems it is desirable to obtain codes where lost

data can be repaired by contacting a small number of nodes r where this number can be as small as

r = 2.

2.3 Binary linear codes from Boolean functions

Several constructions methods of linear codes from special functions (essentially from crypto-

graphic Boolean functions which play a crucial role in symmetric cryptography) over finite fields

have been presented in the recent literature (see [14]). Among many of his contributions to this

topics, Ding proposed in [6] an efficient method to design a linear code from the support set

D = {x ∈ F2m : f(x) 6= 0} of a Boolean function f in Bm using its univariate polynomial rep-

resentation. We denote by nf the size of D. Suppose that D = {d1, d2, · · · , dnf
}. Then Ding
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defined a binary linear code CD of length nf as follows.

CD =
{
cα : α ∈ F2m

}
, cα = (Trm1 (αd1),Trm1 (αd2), · · · ,Trm1 (αdnf

)) (1)

Theorem 1 ([7], Theorem 1). We keep the above notation. If 2nf 6= −χ̂f (α) for all α ∈ F∗2m , then

CD defined by (1) is a binary linear code with length nf and dimension m, and its weight distribution

is given by the following multiset:
{{

2nf+χ̂f (α)
4 : α ∈ F∗2m

}}
∪ {{0}}.

By choosing a basis of F2m over F2, F2m can then be viewed as an m-dimensional vector space over

F2. Thus, each element of F2m can be identified with a binary row vector of length m. We now restate

the above generic construction from the viewpoint of vector space. Let D = {g1,g2, · · · ,gn} ⊆ Fm2 .

The linear code CD of length m over F2 defined from D is:

CD = {(a · g1,a · g2, · · · ,a · gn) : a ∈ Fm2 }, (2)

where a ·gi is the dot product of a and gi. The set D is called the defining set of the resulting code

CD.

3 A new construction method for designing LRC with local-

ity 2 and multiple repair alternatives via autocorrelation

spectra of Boolean functions

The following main result will play an important role in the rest of the paper.

Theorem 2. Let f in Bm such that f(0) = 0 and 2nf 6= −χ̂f (α) for all α ∈ F∗2m . Then CD is an

[nf ,m, d]-LRC with d = min{ 2nf+χ̂f (α)
4 : α ∈ F∗2m}, r = 2, and t = min

{
4nf+Af (a)−2m

8 : a ∈ D
}

,

in which recall that nf is the size of the support set of f and Af (a) is the autocorrelation function

of f at point a.

Proof. It follows from Theorem 1 that CD has dimension m and minimum distance min{ 2nf+χ̂f (α)
4 :

α ∈ F∗2m}. In the rest part of this proof. We will prove that CD is a (2, t)-LRC with t =

min
{

4nf+Af (a)−2m

8 : a ∈ D
}

. Since Trm1 (αx) = 0 for all α ∈ F∗2m if and only if x = 0, then for

all α ∈ F∗2m , the i-th coordinate of the codeword cα defined by (1) can be recovered from the subset

{j1, j2} if and only if di + dj1 + dj2 = 0, where di, dj1 , dj2 ∈ D. Hence, CD is an [nf ,m, d]-LRC with

r = 2, if for all i ∈ {1, . . . , nf}, there is at least one repair set of the i-th coordinate of CD which has

2 elements. We now prove that CD is an (2, t)-LRC with t = min
{

4nf+Af (a)−2m

8 : a ∈ D
}

. From the

above discussion, we know that for a given i ∈ {1, . . . , nf}, the i-th coordinate of CD can recovered

from the subset {j1, j2} if and only if di + dj1 + dj2 = 0, where di, dj1 , dj2 ∈ D, which is equivalent

to saying that, dj1 ∈ (di +D)
⋂
D, where di +D = {di + d : d ∈ D}. Hence, in respect of the order

of {j1, j2}, the number of disjoint repair sets of the i-th coordinate of CD, denoted by ti, can be

computed as

ti =
1

2
# {(j1, j2) : di + dj1 + dj2 = 0, di, dj1 , dj2 ∈ D}

=
1

2
#
{
j1 : dj1 ∈ D

⋂
(di +D)

}
=

1

2
#
(
D
⋂

(di +D)
)
.
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It is not difficult to see that #
(
D
⋂

(di +D)
)

must be even, since dj1 ∈ D
⋂

(di +D) if and only if

dj1 + di ∈ D
⋂

(di +D), and dj1 6= dj1 + di (note that f(0) = 0 implies di 6= 0 for all di ∈ D). Since

#D = #di +D = nf , the autocorrelation function Af (di) can be written as

Af (di) =
∑
x∈F2m

(−1)f(x)+f(x+di)

=
∑

x∈D
⋂

(di+D)

(−1)0 +
∑

x∈
(
D\(di+D)

)⋃(
(di+D)\D

)(−1)1 +
∑

x∈F2m\(D
⋃

(di+D))

(−1)0

= 2ti + 2(−1)(#D − 2ti) + 2m − (2#D − 2ti)

= 8ti − 4nf + 2m.

Therefore, we have ti =
4nf+Af (di)−2m

8 , and thus t = min
{

4nf+Af (a)−2m

8 : a ∈ D
}

.

4 Binary LRCs with locality 2 and multiple repair alterna-

tives from specific wide families of Boolean functions

4.1 LRCs from (bent) Boolean functions through the M-M constructions

First, recall that the Hamming distance between two Boolean functions f1 and f2 in Bm is

equal to the weight of f1 ⊕ f2. The minimum distance between f in Bm and the set of all affine

functions lb ⊕ ε (b ∈ Fm2 , ε ∈ F2), called the nonlinearity of f , is denoted by nl(f) and satisfies the

relation nl(f) = 2n−1− 1
2 maxb∈Fm

2
|χ̂f (b)| . Because of Parseval’s relation ([11]), it is upper bounded

by 2m−1 − 2m/2−1. This bound is tight for m even. Functions achieving the equality are called

bent ([5, 17]). Bent functions are interesting combinatorial objects with many connections in many

domains.(see [4],[3],[13]).

Lemma 1 ([17]). A Boolean function f in Bm is bent if and only if Af (ω) = 0 for any ω ∈ Fm∗2 .

As a first consequence of Theorem 2 using Lemma 1, we derive the following result highlighting

that the bent functions allow the constructions of binary LRCs with locality 2 and multiple repair

alternatives.

Corollary 1. Let f ∈ Bm (where m ≥ 4) be a bent function such that f(0) = 0. Then CD is an

[nf ,m,
nf

2 − 2
m
2 −2]-LRC with r = 2 and t =

4nf−2m

8 .

It is known that any bent function in m variables has Hamming weight 2m−1− 2
m
2 −1 or 2m−1 +

2
m
2 −1. Then by Corollary 1 we can get [2m−1−2

m
2 −1,m, 2m−2−2

m
2 −1]-LRC with (r, t) = (2, 2m−2−

2
m
2 −2 − 2m−3) and [2m−1 + 2

m
2 −1,m, 2m−2]-LRC with (r, t) = (2, 2m−2 + 2

m
2 −2 − 2m−3).

The well-known class of Maiorana-McFarland (M-M) bent functions was discovered indepen-

dently by Maiorana and McFarland (see [5, 12]), which includes a huge number of bent functions.

The M-M construction produce bent functions indeed in Bm where m = 2k but it was generalized

into a more general case as follows (see, e.g., [3]).

Construction 1. Let m be a positive integer and s1, s2 be two positive integers such that s1+s2 = m.

Define a Boolean function f ∈ Bm as follows

f(x, y) = φ(x) · y + g(x), (3)

where x ∈ Fs12 , y ∈ Fs22 , φ be an arbitrary mapping from Fs12 to Fs22 , and g is an arbitrary Boolean

function in s variables.
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For a mapping φ from Fs12 to Fs22 , we denote Ker(φ) = {x ∈ Fs12 | φ(x) = 0}, Imφ = {φ(x) | x ∈
Fs12 }, and φ(U) = {φ(x) | x ∈ U} for a subset U ⊆ Fs12 . Note that for (a, b) ∈ Fs12 × Fs22 , the Walsh

transform of f in (3) can be written as

χ̂f (a, b) =
∑

x∈Fs1
2 ,y∈Fs2

2

(−1)φ(x)·y+g(x)+a·x+b·y =
∑
x∈Fs1

2

(−1)g(x)+a·x
∑
y∈Fs2

2

(−1)(φ(x)+b)·y.

Then, the following corollary is a direct consequence.

Corollary 2. Let f be the function generated by Construction 1, then for any (a, b) ∈ Fs12 × Fs22 we

have

χ̂f (a, b) =

 2s2
∑

x∈φ−1(b)

(−1)g(x)+a·x, b ∈ Imφ,

0, b 6∈ Imφ.
(4)

Furthermore, let U be a subset of Fs12 and V be a subset of Fs22 . If φ is an injection from Fs12 \U
to Fs22 \ V , then for (a, b) ∈ Fs12 × Fs22 , we have

χ̂f (a, b) =


2s2

∑
x∈φ−1(b)

(−1)g(x)+a·x, b ∈ φ(U),

2s2(−1)g(φ
−1(b))+a·φ−1(b), b ∈ Fs22 \ V,

0, b 6∈ Imφ.

(5)

Theorem 3. Let f be the function generated by Construction 1, where g ≡ 0, U is a subspace of

Fs12 . Define φ as a mapping from Fs12 to Fs22 satisfying φ is additive homomorphic from U to V , and

φ is injective from Fs12 \ U to Fs22 \ V . Then, for any (a, b) ∈ Fs12 × Fs22 ,

χ̂f (a, b) =


(−1)a·φ

−1(b)2s2#Ker(φ), if a ∈ Ker(φ)⊥, b ∈ φ(U),

(−1)a·φ
−1(b)2s2 , if b ∈ Fs22 \ V,

0, otherwise.

(6)

Proof. Since φ is additive homomorphic from U to V , we have that for any b ∈ φ(U), φ−1(b) =

u+ Ker(φ), u ∈ U . For convenience, we denote by ub the coset representative of φ−1(b).

According to (5), we only need to consider the case for b ∈ φ(U). Suppose that Ker(φ) has

dimension w, then Ker(φ) = {
∑w
i=1 ciκi | ci ∈ F2, i = 1, . . . , w} for a basis {κ1, . . . , κw} on Fs12 . Let

φ−1(b) = ub + Ker(φ), then for a ∈ Fs12 and b ∈ φ(U), we have

χ̂f (a, b) = 2s2
∑

x∈ub+Ker(φ)

(−1)a·x

= (−1)a·ub2s2
∑

y∈Ker(φ)

(−1)a·y

= (−1)a·ub2s2
∑
c∈Fw

2

(−1)a·(
∑w

i=1 ciκi)

= (−1)a·ub2s2
∑
c∈Fw

2

(−1)
∑w

i=1 ci(a·κi)

= (−1)a·ub2s2
∑
c∈Fw

2

(−1)c·d

=

{
(−1)a·ub2s2+w, if a ∈ Ker(φ)⊥,

0, otherwise,
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where d = (a · κ1, . . . , a · κw) ∈ Fw2 . Note that when a ∈ Ker(φ)⊥, then (−1)a·ub is independent with

the choice of ub in the coset φ−1(b), so we denote ub = φ−1(b) for convenience. The desired result

follows.

Recall that the defining set D of f is defined as the support set of f . Theorem 4 gives the

autocorrelation values of functions from Construction 1. Due to the limit in space, the (long) proof

of Theorem 4 was removed. It will be included in the full version.

Theorem 4. Let f be the function generated by Construction 1, where g ≡ 0, U is a k-dimensional

subspace of Fs12 . Define φ as a mapping from Fs12 to Fs22 satisfying φ is additive homomorphic from

U to V , and φ is injective from Fs12 \ U to Fs22 \ V . Then, for any (a, b) ∈ D,

Af (a, b) =

{
2s2+k, if a ∈ Ker(φ) \ {0}, b ∈ φ(U)⊥,

0, otherwise.
(7)

The following result is obtained directly by combining Theorem 2, Theorem 3, and Theorem 4.

It can be easily checked that Corollary 1 is a particular case of Theorem 5 below with U = {0}.

Theorem 5. Let f be an m-variable (m ≥ 4) M-M function generated by Construction 1, where

m = s1 + s2, g ≡ 0, and U is a k-dimensional subspace of Fs12 . Define φ as a mapping from Fs12 to

Fs22 satisfying φ is additive homomorphic from U to V , #U 6= #Ker(φ) < 2s1−1 if k > 1, and φ is

injective from Fs12 \ U to Fs22 \ V . Then, CD defined in (2) is an [nf ,m,
nf

2 − 2s2−2#Ker(φ)]-LRC

with r = 2 and

t =

{
4nf−2s2+k−2m

8 , if Ker(φ) \ {0} 6= ∅, φ(U)⊥ 6= ∅,
4nf−2m

8 , otherwise.

Proof. Since g ≡ 0 and φ is additive homomorphic from U to V , then f(0, 0) = φ(0) · 0 + 0 = 0. It

can be easily checked that since #Ker(φ) < 2s1−1, then for any (a, b) ∈ Fs12 × Fs22 ,

2nf + χ̂f (a, b) = 2s1+s2 − χ̂f (0, 0) + χ̂f (a, b)

= 2s1+s2 − 2s2#Ker(φ) + χ̂f (a, b)

> 2s1+s2 − 2s2+1#Ker(φ) > 0.

Hence, according to Theorem 2, we know that CD is an [nf ,m, d]-LRC with d = min{ 2nf+χ̂f (a,b)
4 :

(a, b) ∈ Fs12 ×Fs22 , (a, b) 6= (0, 0)}, r = 2, and t = min{ 4nf+Af (a,b)−2m

8 : (a, b) ∈ D}. From Theorem 3

and Theorem 4, we only need to prove that there exists (a, b) ∈ Fs12 × Fs22 such that χ̂f (a, b) =

−2s2#Ker(φ). If U = {0}, then we have #Ker(φ) = 1, and thus χ̂f (a, b) = −2s2 for some (a, b) ∈
Fs12 ×F

s2
2 . If dim(U) > 1, then we choose a ∈ Ker(φ)⊥\U⊥, and thus for any b ∈ φ(U), a·φ−1(b) 6= 0.

The desired result is therefore deduced thanks to Theorem 3.

4.2 LRCs from Boolean functions based on partial spreads

Spreads and partial spreads are fundamental objects in several fields, including the theory of

(bent) Boolean functions. We emphasize below that they also play a role in constructing LRCs.

Recall that a partial k-spread of the vector space Fm2 is a collection µ of k-dimensional subspaces

V1, V2, · · · , Vs of Fm2 such that Vi∩Vj = {0} for 1 ≤ i 6= j ≤ s. Such a collection is called a spread if,

in addition,
⋃s
i=1 Vi = Fm2 . Particularly, for m = 2k, a partial k-spread of Fm2 with m = 2k is a set

of pairwise supplementary of k-dimensional subspaces of Fm2 . In this case, a k-spread of Fm2 can be

easily obtained from the finite field F2m , in which a k-dimensional subspace of Fm2 can be viewed as
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an additive group of F2m . Indeed, let α be a primitive element of F2m and γ = α2k+1, then we can

easily verify that V1, V2, · · · , V2k+1 defined by Vi = {αi−1, αi−1γ, αi−1γ2, · · · , αi−1γ2k−2} ∪ {0} for

any 1 ≤ i ≤ 2k + 1 form a spread of F2m . In the sequel, we consider Boolean functions with support

constituted by partial spreads and the parameters of results in locally repairable codes.

Lemma 2. Let m = 2k ≥ 4 be an integer and Ωs = {V1, V2, · · · , Vs} be a partial k-spread of

Fm2 , where 2 ≤ s ≤ 2k + 1. Let fs ∈ Bm be the Boolean function with support Ωs \ {0}, i.e.,

supp(fs) = Ωs \ {0}. Then we have

Afs(a) =


2m, if a = 0

2m + 4s2 − 2k+2s− 8s+ 2k+2, if a ∈ supp(fs)

2m + 4s2 − 2k+2s, if a ∈ Fm∗2 \ supp(fs)

Proof. The well-known Wiener-Khintchine Theorem (see e.g., [2]) shows that for any m-variable

Boolean function h and an arbitrary vector a ∈ Fm2 , we have (where · denotes a scalar product in

Fm2 ):

Ah(a) = 2−m
∑
u∈Fm

2

χ̂h
2
(u)(−1)u·a. (8)

Therefore, it is sufficient to determine the values of χ̂fs
2
(u) for all u ∈ Fm2 . We now consider the

values of χ̂fs (u), where u ∈ Fm∗2 , by considering χ̂fs (u) = −2
∑
x∈supp(fs)(−1)u·x. Basically, our

discussion is based on the fact that, for any 1 ≤ i ≤ s, we have
∑
x∈Vi\{0}(−1)u·x = 2k − 1 if u ⊥ Vi

and
∑
x∈Vi\{0}(−1)u·x = −1 otherwise. Note also that for any 1 ≤ i 6= j ≤ s if we have both u ⊥ Vi

and u ⊥ Vj then u must be the all-zero vector, i.e., u = 0. Then we can straightforwardly obtain

that

χ̂fs (u) =


2m − 2s(2k − 1), if u = 0

−2k+1 + 2s, if u ∈ Ω′s
2s, if u 6∈ Ω′s

, (9)

where Ω′s =
⋃s
i=1 V

⊥
i \ {0}, in which V ⊥i denotes the orthogonal subspace of Vi.

We are ready now to give the values of Afs(a) for all a ∈ Fm2 . Clearly, by the definition of

autocorrelation function we can directly get Afs(0) = 2m. For any a ∈ Fm2 \ {0}, two cases can

occur.

Case A. a ∈ supp(fs). Note that Ω′s ∪ {0} is also a partial k-spread of Fm2 , constituted by s

subspaces of Fm2 . Since a ∈ supp(fs) =
⋃s
i=1 Vi \{0} and Ω′s =

⋃s
i=1 V

⊥
i \{0}, there exists exact one

Vj such that a ⊥ Vj , where 1 ≤ j ≤ s. This implies that
∑
u∈Ω′s

(−1)a·u = (2k − 1) + (−1) · (s− 1) =

2k − s. In addition, we have
∑
u∈Fm∗

2 \Ω′s
(−1)a·u = s− 2k − 1 since

∑
u∈Fm∗

2
(−1)a·u = −1 for a 6= 0.

Then by (8), we have

Af (a) = 2−m
((

2m − 2s(2k − 1)
)2

+ (−2k+1 + 2s)2
∑
u∈Ω′s

(−1)a·u + (2s)2
∑

u∈Fm∗
2 \Ω′s

(−1)a·u
)

= 2−m
((

2m − 2s(2k − 1)
)2

+ (−2k+1 + 2s)2(2k − s) + (2s)2(s− 2k − 1)

)
= 2−m

(
22m + s22m+2 − s2m+k+2 + 2m+k+2 − s2m+3

)
= 2m + 4s2 − 2k+2s− 8s+ 2k+2.

Case B. a ∈ Fm∗2 \ supp(fs). Similar to Case A above, we have
∑
u∈Ω′s

(−1)a·u = −s and
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∑
u∈Fm∗

2 \Ω′s
(−1)a·u = s− 1. Then by (8), we have

Af (a) = 2−m
((

2m − 2s(2k − 1)
)2

+ (−2k+1 + 2s)2(−s) + (2s)2(s− 1)

)
= 2m + 4s2 − 2k+2s.

The assertion of theorem follows from the two cases above. This completes the proof.

We are ready now to present the parameters of LRCs derived from the Boolean functions based

on partial spreads.

Theorem 6. Let m = 2k ≥ 4 be an integer and Ωs = {V1, V2, · · · , Vs} be a partial k-spread of Fm2 ,

where 2 ≤ s ≤ 2k + 1. Let fs ∈ Bm be the Boolean function with support Ωs \ {0}. Then the binary

linear code CDs
defined by (2) is an [(2k−1)s,m, 2k−1(s−1)]-LRC with r = 2 and t = 4s2−12s+2k+2

8 .

Proof. It can be easily seen that the linear code CDs
has length (2k − 1)s. Then by Theorem 1

and (9) we obtain that CDs has dimension m. Finally, by Theorem 2 and Lemma 2 we immediately

get that r = 2 and t = 4s2−12s+2k+2

8 , which completes the proof.

5 Conclusions

We have presented a new approach to design locally repairable codes (LRCs) with locality two

and multiple repair alternatives by employing Boolean functions. Specifically, we focused on codes

achieving minimum repair locality and maximum rate. We analyzed those codes using new tools

and proposed an explicit construction method for designing them. A connection between LRCs

(with multiple repair alternatives) and (the autocorrelation spectrum of) Boolean functions has

been pointed out for the first time in this context (to the best of our knowledge), emphasizing

notably a novel role of bent functions for designing LRCs.
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