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1 Introduction

The study of self-dual codes has gained much attention because of their rich
mathematical theory. One particular problem is to construct self-dual codes with
largest minimum weight among self-dual codes of a given length and classify
them. Type II codes are a special class of self-dual codes. In [13], it was found
that there are 13 inequivalent extremal Type II codes over Z4 of length 24 whose
reductions modulo 2, is the binary extended Golay code. All extremal Type II
codes over Z4 of length 24 with an automorphism of prime order p ≥ 5 are
classified in [12]. In [5], extremal Type II codes over Z4 of length 32 and 40
were constructed using a doubling method and a generalization of the method
by Harada in [8].

In [13], Rains studied self-dual codes over Z4, via their residue codes. This
method reduces the problem of finding optimal codes over Z4 to a problem of
enumerating lifts of a given residue code, which in this case, is a doubly-even
binary code. A precise description of Rains’ algorithm for classifying self-dual
codes over Z4 with a given residue code was given in [2]. We will apply this
for Type II codes over Z4 and give a classification of extremal Type II codes of
length 24. By [10, Lemma 2], this is equivalent to a classification of 4-frames in
the Leech lattice up to the action of the automorphism group. Since every 4-
frame of the Leech lattice gives rise to a Virasoro frame of the moonshine vertex
operator algebra V \ (see [7]), our result has implications in the structure of V \

as a framed vertex operator algebra. In fact, according to [9], those Virasoro
frames obtained from a 4-frame of the Leech lattice are precisely the ones whose
structure codes are extended doublings of the residue codes.



2 Preliminaries

Let Zm denote the ring of integers modulo m. A (linear) Zm-code of length n
is a Zm-submodule of Znm. Two codes C and C′ over Zm are equivalent if there
exists a monomial (±1, 0)-matrix P such that C′ = C · P = {c · P | c ∈ C}. The
automorphism group Aut(C) is the group of monomials that preserves C. We
denote by ZkmG the Zm-code with generator matrix G.

The Hamming weight of x ∈ Znm denoted by wt(x) is the number of its
nonzero components. The Euclidean weight wtE(x) of an element x ∈ Z4 is
defined by wtE(0) = 0, wtE(1) = wtE(3) = 1 and wtE(2) = 4. The Euclidean
weight of a vector in Zn4 is the integral sum of the Euclidean weights of its
components. The minimum Hamming and Euclidean weight of a code C are the
smallest Hamming and Euclidean weights among all nonzero codewords of C,
respectively.

We equip Zn4 with the standard inner product x · y =
∑n
i=1 xiyi, for x =

(x1, . . . , xn), y = (y1, . . . , yn) ∈ Zn4 . The dual of a Z4-code C is defined as C⊥ =
{v ∈ Zn4 | u · v = 0 for all u ∈ C}. We say that a code C is self-orthogonal
if C ⊆ C⊥, and self-dual if C = C⊥. An even code is a subclass of the class of
self-orthogonal codes over Z4, all of whose codewords have Euclidean weights
divisible by 8. When an even code over Z4 is self-dual, then it is called Type II.
The minimum Euclidean weight dE of a Type II code of length n satisfies

dE ≤ 8
⌊ n

24

⌋
+ 8

by [1]. A Type II code meeting this bound with equality is said to be an extremal
code.

There are two binary codes res(C) and tor(C) associated with a Z4-code C:

res(C) = {c mod 2 | c ∈ C} and tor(C) = {c mod 2 | c ∈ Zn4 , 2c ∈ C}.

The codes res(C) and tor(C) are called the residue and torsion codes of C, respec-
tively. A Z4-code C is said to be free if res(C) = tor(C). In this case, the code C
is called a lift of res(C). If C is self-dual, then res(C) is a binary doubly-even code
with tor(C) = res(C)⊥ (see [6]). Moreover, if C is Type II, then res(C) contains
the all-ones vector 1 by [11, Lemma 2.2].

Let K be a field of characteristic 2, and let n a positive integer. We denote
by Symn(K) (and Altn(K)) by the set of symmetric (resp. alternating) matrices
of order n with entries in K. For a square matrix A, we denote by Diag(A) the
diagonal matrix whose diagonal entries are those of A. Then

Altn(K) = {A ∈ Symn(K) | Diag(A) = 0}.

We state here the following lemma used to prove Lemma 3.

Lemma 1 ([3, Lemma 3.2]). Let charK = 2, rankA = m for A ∈Mm×n(K)
and the vector 1n does not belong to the row space of A. Then the map

ΦA : Mm×n(K)→ Symm(K)⊕Km

N 7→ (AN> +NA> + Diag(AN>),1N>)

is surjective.



3 The Set of Z4-Codes with Given Residue

In this section, given a binary doubly even code C, we investigate how Aut(C)
acts on the set of Type II Z4-codes having the residue code C.

Let k and n be positive integers with 2k ≤ n, and set M = Mk×n(Z2). Let
C be a k-dimensional doubly-even binary code of length n containing 1n, with
generator matrix A ∈M. Moreover, let[

A
B

]
be a generator matrix of C⊥, where B ∈M(n−2k)×n(Z2). Thus,

AA> = 0, (1)

BA> = 0, (2)

1B> = 0. (3)

Define

V0 = {M ∈M |MA> +AM> = 0}, (4)

W0 = 〈{M ∈M |MA> = 0}, {AEii | 1 ≤ i ≤ n}〉, (5)

U0 = {M ∈ V0 | Diag((A+ J)M>) = 0}, (6)

W = W0 ⊕ {0} ⊆W0 ⊕ Z2, (7)

U = U0 ⊕ Z2, (8)

where Eij is the matrix which has 1 in the (i, j)-entry and zeros in all other
entries. Define matrices Fij over Z4 by Fij = I + 2Eij .

Lemma 2. We have W0 ⊆ U0 and W ⊆ U .

As in [2], we denote by ι : Z2 → Z4 the mapping defined by ι(0) = 0
and ι(1) = 1. We also define the mapping α : Z4 → Z8 by α(x) = x for
x ∈ {0, 1, 2, 3}. We use the same symbol ι and α to denote its elementwise
application to matrices. Observe that for x ∈ Z4, α(x)2 = wtE(x) mod 8. The
following lemma shows that a doubly even binary code containing 1 can be lifted
to a free even code over Z4.

Lemma 3. Let C be a doubly even binary code of length n containing 1n, where
n ≡ 0 (mod 8). Let x ∈ C \ {0}, and let a ∈ Zn4 be such that a mod 2 = x and
wtE(a) ≡ 0 (mod 8). Then there exists a free even Z4-code C such that a ∈ C
and res(C) = C.

By Lemma 3, the code C can be lifted to a free even Z4-code. This means
that there exists Ã ∈Mk×n(Z4) such that

ÃÃ> = 0,

2Ã = 2ι(A),

Diag(α(Ã)α(Ã>)) = 0.



Then the Z4-code generated by [
Ã

2ι(B)

]
is a Type II code by (2) and (3).

Lemma 4. For M ∈M, the code Zk4
[
Ã+ 2ι(M)

]
is even if and only if M ∈ U0.

In particular, the code

CM = Zn−k4

[
Ã+ 2ι(M)

2ι(B)

]
(9)

is Type II if and only if M ∈ U0.

Suppose P ∈ Aut(C). Since A has full row rank, there exists a unique matrix
E1(P ) ∈ GL(k,Z2) such that

AP = E1(P )A.

Also, there exists a unique matrix E2(P ) ∈M such that

2ι(E2(P )) = ι(E1(P )−1)Ãι(P )− Ã.

It was shown in [2] that the group Aut(C) acts on V/W linearly by

((M,a) +W )P = (E1(P )−1MP + aE2(P ), a) +W, (10)

where V = V0 ⊕ Z2. We have the following lemma from [2].

Lemma 5. For M ∈M, P ∈ Aut(C) and Λ ⊆ {1, 2, . . . , n}, we have

Zn−k4

[
Ã+ 2ι(M)

2ι(B)

](∏
i∈Λ

Fii

)
ι(P )

= Zn−k4

[
Ã+ 2ι(E1(P )−1MP + E2(P ) +A

∑
i∈ΛP Eii)

2ι(B)

]
.

Now, the next theorem is an analogue of [2, Theorem 1] for Type II Z4-codes.

Theorem 1. Let C be a binary doubly-even code containing 1 with generator
matrix A. Define V0,W0, U0,W,U by (4)–(8). Then the action of Aut(C) given
by (10) leaves the subset

Ω′ = {(M, 1) +W |M ∈ U0}

invariant, and the orbits of Aut(C) on Ω′ are in one-to-one correspondence with
the equivalence classes of Type II codes over Z4 with residue code C.



4 Extremal Type II Z4-Codes

We continue to use the notation fixed in the beginning of Section 3, that is,
(1)–(8). From the previous section, we know that every Type II Z4-codes whose
residue code is a doubly-even code C = Zk2A can be found as an element of
U/W , up to column negation, in the sense (9) above.

For a subset T ⊆ {1, . . . , n} of coordinates and a vector v ∈ Zn2 , denote by

v|T the restriction (vi)i∈T to T . The punctured code C|T ⊆ Z|T |2 is defined as

C|T = {v|T | v ∈ C}.

For x ∈ Zk2 , define
S(x) = {1, . . . , n} \ supp(xA),

where supp(xA) denote the support of xA.

Lemma 6. If 0 6= x ∈ Zk2 , then

{(xM)|S(x) |M ∈W0} = C⊥|S(x).

For x ∈ Zk2 , define an affine subspace H(x) of Z|S(x)|2 by

H(x) =

(
(ι(x)Ã)i

2
mod 2

)
i∈S(x)

+ C⊥|S(x),

where Ã mod 2 = A.

Lemma 7. If 0 6= x ∈ Zk2 with wt(xA) ≡ 0 (mod 8), then there exists an
element Mx ∈ U0 such that (xMx)|S(x) ∈ H(x).

For each x ∈ Zk2 , define

K0(x) = {M ∈ U0 | (xM)|S(x) ∈ C⊥|S(x)}, (11)

K(x) = 〈K0(x)⊕ {0}, (Mx, 1)〉. (12)

Then by Lemma 6, we have W ⊆ K(x), and obviously K(x) ⊆ U .

Lemma 8. For 0 6= x ∈ Zk2 with wt(xA) ≡ 0 (mod 8) and M ∈ U0, the follow-
ing are equivalent:

(i) (M, 1) +W ∈ K(x)/W ,
(ii) (xM)|S(x) ∈ H(x).

Lemma 9. Let M ∈ U0. Then the code CM defined in (9) has a codeword of
Euclidean weight 8 reducing modulo 2 to a codeword of Hamming weight 8 if and
only if

(M, 1) +W ∈
⋃
x∈Zk

2

wt(xA)=8

K(x)/W.



By definition, a Type II Z4-code of length 24 is called extremal if its minimum
Euclidean weight is 16. Since Euclidean weights are divisible by 8 for codewords
in Type II codes, a Type II Z4-code of length 24 is extremal if and only if it
has no codeword of Euclidean weight 8. Lemma 9 allows us to discard those
non-extremal codes which contain a codeword of Euclidean weight 8 reducing
modulo 2 to a codeword of Hamming weight 8. Note that we need to assume
that the dual C⊥ of C has minimum Hamming weight at least 4, since otherwise
the torsion code of a Type II Z4-code C with res(C) = C will have a codeword of
Hamming weight 2, and hence C contains a codeword of composition 22022. Note
also that a Type II Z4-code of length 24 may contain a codeword of composition
(±1)421019, of Euclidean weight 8. Such a code needs to be eliminated during the
classification of extremal Type II Z4-codes of length 24. As a result of computer
enumeration, we obtain the following classification theorem.

Theorem 2. There are 4,744 inequivalent extremal Type II Z4-codes of length
24.

In Table 1, we list the number of inequivalent extremal Type II Z4-codes C
of length 24. It is known that a residue code C of an extremal Type II Z4-code
of length 24 must be a binary doubly-even code containing 1 whose dual C⊥

has minimum Hamming weight at least 4 and dimC ≥ 6, and there is a unique
Type II Z4-code of length 24 whose residue code has dimension 6 (see [9]).

We have also examined which of the codes we classified have an automor-
phism of order p for p = 23, 11, 7, 5. Such codes have been classified by Huffman
[12], and the numbers agree with ours, except for p = 5. In [12, Theorem 3.5],
it is claimed that there are 28 extremal Type II Z4-codes of length 24 with an
automorphism of order 5. Our result shows, however, that there are only 22 such
codes. In the notation of [12], the codes C24, C25, C28 are equivalent to C23, and
the codes C39, C40, C44 are equivalent to C38.

All computer calculations in this paper were done with the help of MAGMA
[4].

Table 1. Number of inequivalent extremal Type II Z4-codes of length 24

dim res(C) 6 7 8 9 10 11 12

#(res(C)) 1 7 32 60 49 21 9

#C 1 5 29 171 755 1880 1903
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