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Abstract In this paper, we analyze the hardness of the Matrix Code
Equivalence (MCE) problem for matrix codes endowed with the rank met-
ric, and provide the first algorithms for solving it. We do this by making a
connection to another well-known equivalence problem from multivariate
cryptography - the Isomorphism of Polynomials (IP). We show that MCE
is equivalent to the homogenous version of the Quadratic Maps Linear
Equivalence (QMLE) problem. Using birthday techniques known for IP,

we present an algorithm for MCE running in time O∗(q
2
3
(n+m)), and an

algorithm for MCE with roots, running in time O∗(qm) . We verify these
algorithms in practice.

1 Introduction

Equivalence problems are one of the core problems underlying the security of
many public-key cryptosystems, especially post-quantum ones. Many multivari-
ate and code-based systems employ an equivalence transformation as a hiding
technique, and thus intrinsically rely on the assumption that a particular equiv-
alence problem is intractable, for example [26, 15, 23, 25, 6, 11]. In addition,
quite remarkably, a hard equivalence problem gives rise to a Sigma protocol and,
through the Fiat-Shamir transform, a provably secure digital signature scheme
[19]. This idea has been revisited many times, being the basis of several signa-
ture schemes [26, 21, 13, 14, 7]. Understanding the hardness of these equivalence
problems is an essential task in choosing appropriate parameters.

One of these problems is the Code Equivalence problem, which given two
codes, asks for the equivalence transformation mapping one to the other. It
was first studied by Leon [22] who proposed an algorithm that takes advantage
of the Hamming weight being invariant under monomial permutations. It was
improved very recently by Beullens [5] using collision-based techniques. Sendrier
[30] proposed another type of algorithm, the Support Splitting Algorithm (SSA),
that is exponential in the dimension of the hull (the intersection of a code and
its dual). Interestingly, in low characteristic, random codes have very small hull,
rendering the problem easy.

In this paper, we focus on the code equivalence problem, but for matrix codes
(an Fq-linear subspace of the space of m × n matrices over Fq) endowed with
the rank metric - MCE (Matrix Code Equivalence). Evaluating the hardness



of this problem is only natural – rank-based cryptography has become serious
competition for its Hamming-based counterpart, showing superiority in key sizes
for the same security level [1, 24, 2, 3]. This problem, and variations of it, has
been introduced by Berger in [4], but it was only recently that Couvreur et al. [12]
showed first concrete statements about its hardness. Namely, they showed that
MCE is at least as hard as the Code Equivalence problem in the Hamming metric,
while for only right equivalence, or when the codes are Fqm -linear, the problem
becomes easy.

1.1 Our contributions

In this paper, we investigate the theoretical and practical hardness of the Matrix
Code Equivalence (MCE) problem. Our contributions are twofold:

First, we prove that MCE is equivalent to the Quadratic Maps Linear Equiv-
alence (QMLE) problem, by providing a polynomial-time reduction from MCE
to QMLE and vice versa. Our work is the first to provide a reduction to a known
problem, thus giving an upper bound on the hardness of MCE. Furthermore, we
establish a so far unknown connection between code equivalence problems and
polynomial equivalence problems. This is visualized in Figure 1.

Second, we provide algorithms for solving MCE. The first algorithm is a gen-
eralization of a known birthday-based algorithm for QMLE [10]. We show that
the algorithm extends to different invariance properties, which helps us prove a
complexity for MCE of O∗(q 2

3 (n+m)) for m× n matrix codes. We adapt the im-
plementation of [10] and provide benchmarks showing success probability higher
than 63%, which is consistent with birthday-based algorithms. The second algo-
rithm uses the bilinear structure of the polynomials arising from MCE to improve
the performance of the first algorithm. In particular, when the polynomials have
common roots, we provide an algorithm running in time O∗(qm) deterministi-
cally.
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Figure1. Reductions around Matrix Code Equivalence, with our contribution dashed.
“A −→ B” means that “Problem A reduces to Problem B in polynomial time”.
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2 Preliminaries

Let Fq be the finite field of q elements. GLN (q) and AGLN (q) denote respectively
the general linear group and the general affine group of degree n over Fq.

We use bold letters to denote vectors a, c,x, . . . , and matrices A,B, . . . . The
entries of a vector a are denoted by ai, and we write a = (a1, . . . , an) for a (row)
vector of dimension n over some field. Similarly, the entries of a matrix A are

denoted by Aij . Random sampling from a set S is denoted by a
$←−− S.

The Matrix Code Equivalence problem. A matrix code is a subspace C
of m × n matrices over Fq endowed with the rank metric defined as d(A,B) =
Rank(A − B). We denote by k the dimension of C as a subspace of Fm×nq and
its basis by 〈C1, . . . ,Ck〉, where Ci ∈ Fm×nq are linearly independent. Due to
symmetry, without loss of generality, in the rest of the text we will assume n > m.

The matrix code equivalence (MCE) problem is formally defined as follows:

MCE(k, n,m, C,D):
Input: Two k-dimensional matrix codes C,D ⊂Mm,n(q)
Question: Find – if any – A ∈ GLm(q),B ∈ GLn(q) such that for all C ∈ C, it
holds that ACB ∈ D.

One can also consider an easier variant of MCE, with µ : C 7→ ACB and
A (or B) trivial. This is known as the Matrix Codes Right (Left) Equivalence
problem (MCRE), and contains Vector Rank Code Equivalence as a sub-problem.
The authors of [12] analyse both MCE and MCRE and show that MCE is at least
as hard as the Monomial Equivalence problem for linear codes over Fq, while
MCRE can always be solved in probabilistic-polynomial time.

Although the authors of [12] don’t give any algorithms or complexity esti-
mates for MCE, it is easy to see that by brute-forcing either A or B and solving
the other as an instance of MCRE, we get a complexity of O(qm

2

) for MCE.

Systems of quadratic polynomials. Let P = (p1, p2, . . . , pk) : FNq → Fkq be
a vectorial function of k quadratic polynomials in N variables x1, . . . , xN , where

ps(x1, . . . , xN ) =
∑

16i6j6N

γ
(s)
ij xixj+

N∑
i=1

β
(s)
i xi+α

(s), γ
(s)
ij , β

(s)
i , α

(s)∈ Fq, 1 6 s 6 k.

It is common to represent the homogeneous components of P as xP(s)x>,
where x = (x1, . . . , xN ) and P(s) is a (N ×N) symmetric matrix describing the

degree-2 homogeneous component of ps. In odd characteristic, P
(s)
ij = P

(s)
ji =

γ
(s)
ij /2 for i 6 j and P

(s)
ii = γ

(s)
ii , whereas in even characteristic, P

(s)
ij = P

(s)
ji =

γ
(s)
ij for i 6 j and P

(s)
ii = 0.

Given a non-zero a ∈ FNq , a well studied object in multivariate cryptology is
the differential of P at a (see [16, 20]):

DaP : FNq → Fkq , x 7→ P(x + a)− P(x)− P(a).

In this work we are mostly interested in the kernel of this linear map, asDaP(x) =
0 implies that P behaves linear at (x + a), as P(x + a) = P(x) + P(a).
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Isomorphism of polynomials. The Isomorphism of Polynomials (IP) problem
(or Polynomial Equivalence (PE) [18]) was first defined by Patarin in [26] for the
purpose of designing a “graph isomorphism”-like identification scheme and a
digital signature using the Fiat-Shamir transform. It is defined as follows.
IP(N, k,F ,P):
Input: Two k-tuples of multivariate polynomials F = (f1, f2, . . . , fk), P =
(p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN ]k

Question: Find – if any – (S, s) ∈ AGLN (q), (T, t) ∈ AGLk(q) such that

P(x) = F(xS + s)T + t. (1)

The variant of the problem where (T, t) is trivial is known as the Isomorphism
of Polynomials with one secret (IP1S), and if P and F are quadratic and both
s and t are null, the problem is known as Quadratic Maps Linear Equivalence
(QMLE) problem.

The decisional version of IP is not NP-complete [27], but it is known that
even IP1S is at least as difficult as the Graph isomorphism problem [27]. The
IP problem has been investigated by several authors, initially for the security
of the C∗ scheme [27], but later also in [28, 29, 18, 9, 10]. In [18] an empirical
argument was given that random inhomogeneous instances are solvable in O(N9)
time, but a rigorous proof for this case still remains an open problem. Under this
assumption, the same paper provides an algorithm of complexity O(N9qN ) for
the homogeneous case, that was subsequently improved to O(N9q2N/3) in [10].

In this work, we will be interested in the homogeneous variant of QMLE, that
we denote hQMLE, as the hardest and most interesting instance of QMLE.

Graph-Theoretic Algorithm for hQMLE. At Eurocrypt 2013 Bouillaguet et
al. [10] proposed an algorithm for solving hQMLE using techniques from graph
theory. Their main idea was to reduce the homogeneous case to the inhomo-
geneous case, which they assume is efficiently solvable (e.g. using the heuristic
algebraic approach of [18]). We briefly explain their method.

Starting from an instance of hQMLE, they build two exponentially large
graphs that correspond to the given maps F and P such that, finding an isomor-
phism between the two graphs is equivalent to finding an isomorphism between
the two quadratic maps. Since the graphs are exponentially large, a technique
is provided to walk through the graphs without constructing them. Walking
through the graphs consists of finding adjacent vertices and computing the de-
gree of a vertex, both in polynomial time. The algorithm consists in finding pairs
of vertices from the first and the second graph that have the same degree and
making queries to an inhomogenous QMLE solver. If the solver finds an isomor-
phism by which two vertices are related, then the isomorphism between the two
graphs, and thus the isomorphism between the two quadratic maps, is found.

3 How hard is MCE

In this section we show that the hQMLE and the MCE problem are equivalent.
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Theorem 1. The MCE problem is at least as hard as the hQMLE problem.

Proof (Sketch). Let (N, k,F ,P), where F=(f1, f2, . . . , fk), P=(p1, p2, . . . , pk) ∈
Fq[x1, . . . , xN ]k are k-tuples of quadratic homogenous polynomials, be an in-
stance of hQMLE. We can efficiently represent it as an instance of the MCE
problem as follows. Since the components ps and fs for every s ∈ {1, . . . , k} of
the mappings P and F are quadratic and homogenous, they can be represented
as N×N symmetric matrices P(s) and F(s). Taking (P(1), . . . ,P(k)) to be a basis
of a matrix code D and (F(1), . . . ,F(k)) a basis of a matrix code C we obtain an
instance (k,N,N, C,D) of MCE.

Now, let (N, k,F ,P) be a positive instance of hQMLE. This means that there
exist S ∈ GLN (q), T ∈ GLk(q) such that P(x) = F(xS)T. Since T is nonsingu-
lar, we can write this as P(x)T−1 = F(xS). This can be rewritten in a matrix
form as

∑
16j6k

t̃sjP
(j) = SF(s)S>, ∀s, 1 6 s 6 k where t̃sj is the (j, s) entry of

the matrix T−1. Since (P(1), . . . ,P(k)) is a basis of the code D, any
∑

16j6k
t̃sjP

(j)

belongs to D. Hence, SF(s)S> ∈ D, ∀s, 1 6 s 6 k. Since (F(1), . . . ,F(k)) is a
basis of the code C this means that SCS> = D i.e. (k,N,N, C,D) is a positive
instance of MCE.

A similar argument in the opposite direction shows that a positive instance
(k,N,N, C,D) of MCE results in a positive instance (N, k,F ,P) of hQMLE. ut

Theorem 2. hQMLE is at least as hard as MCE.

Proof (Sketch). We proceed similarly as the other direction. Let (k, n,m, C,D)
be instance of MCE, where C and D are m × n matrix codes (of matrices
from Mm,n(q)) of dimension k over Fq. We can efficiently represent it as an
instance of the hQMLE problem as follows. Let (D(1), . . . ,D(k)) be a basis of
the code D and (C(1), . . . ,C(k)) a basis of the code C. We make an impor-
tant observation: There is a one-to-one correspondence between matrices from
Mm,n(q) and bilinear forms in variables x1, . . . , xm, y1, . . . , yn over Fq given by:
M 7→

∑
16i6m,16j6n

Mijxiyj . This means that each of the matrices in the bases

(C(1), . . . ,C(k)) and (D(1), . . . ,D(k)), can be seen as unique representations
of bilinear forms. In particular, for the matrix C(s) we construct the bilinear

form cs(x,y) =
∑

16i6m,16j6n
C

(s)
ij xiyj and for the matrix D(s) the bilinear form

ds(x,y) =
∑

16i6m,16j6n
D

(s)
ij xiyj ,∀s, 1 6 s 6 k. Taking F = (c1, c2, . . . , ck) and

P = (d1, d2, . . . , dk), and renaming variables as z = (x,y) = (x1, . . . , xm, y1, . . . , yn)
we obtain an instance (m+ n, k,F ,P) of hQMLE.

Now, let (k, n,m, C,D) be a positive instance of MCE. This means, there
exist matrices A ∈ GLm(q) and B ∈ GLn(q) such that D = ACB. In terms of
the bases of C and D, this means that there exist linearly independent vectors
(t̃1j , t̃2j , . . . , t̃kj), for 1 6 j 6 k such that∑

16j6k

t̃sjD
(j) = AC(s)B, ∀s, 1 6 s 6 k. (2)
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Using the bilinear forms, this equation can be rewritten as∑
16j6k

t̃sjdj(x,y) = cs(xA,yB
>), ∀s, 1 6 s 6 k. (3)

Taking S =

[
A 0
0 B>

]
and z = (x,y) = (x1, . . . , xm, y1, . . . , yn), we get

∑
16j6k

t̃sjdj(z) = cs(zS), ∀s, 1 6 s 6 k.

This further rewrites to P(z) = F(zS)T, where t̃sj is the (j, s) entry of the
matrix T−1, which means (m+ n, k,F ,P) is a positive instance of hQMLE.

We can similarly show that a positive instance (m + n, k,F ,P) of hQMLE
results in a positive instance (k, n,m, C,D) of MCE. ut

4 Solving MCE as QMLE

4.1 First algorithm

We start out with a description of a birthday-based algorithm for finding an
isomorphism between two objects when a certain polynomial-time solver exists.
This algorithm is just a generalization of the graph-based algorithm in [10] for
solving hQMLE. In this form, it can be applied to a broader type of equivalence
problems, using more general invariants, here implemented as a predicate P.

Let S1 and S2 be subsets of a universe U of equal size N . Algorithm 1 finds
an equivalence function φ : S1 → S2. We assume there exists a predicate P : U →
{>,⊥} that can be computed in polynomial time and that is invariant under the
equivalence φ, i.e. P(x) = > ↔ P(φ(x)) = >. Let U> = {x ∈ U | P(x) = >}, and
d = |U>|/|U |. We will call d the density of the predicate P. We further assume
the existance of an efficient algorithm FindFunction, that given x ∈ S1, y ∈ S2

returns φ if y = φ(x) and ⊥ otherwise.

Algorithm 1 General Birthday-based Equivalence Finder

1: function SampleSet(S,P)
2: L← ∅
3: repeat

4: a
$←−− S

5: if P(a) then L← L ∪ {a}
6: until |L| = `
7: return L

8: function CollisionFind(S1, S2)
9: L1 ← SampleSet(S1,P)

10: L2 ← SampleSet(S2,P)
11: for all (a, b) ∈ L1 × L2 do
12: φ←FindFunction(a, b)
13: if φ 6= ⊥ then
14: return solution φ

15: return ⊥

Lemma 1. Algorithm 1 performs on average O(
√
N/d) operations in Sample-

Set, queries FindFunction at most d ·N times, and succeeds with probability
1 − 1/e. The optimal value for d, up to a polynomial factor is d = N−1/3, for

which the total complexity of the algorithm is O∗(N 2
3 ).
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Proof. First note that the expected number of elements in S1 and S2 such that
P(x) holds is equal to dN . Taking the lists of size ` =

√
d ·N , by the birthday

paradox, we get a probability of 1 − 1
e that FindFunction returns a solution.

Here, the number of queries to FindFunction is dN .
On the other hand, the number of samples needed to build the list L1 (resp.

L2) of elements a ∈ S1 (resp. b ∈ S2) such that P(a) (resp. P(b)) holds is `/d,
which gives a complexity to build the required lists Li of O(

√
N/d).

The total running time is optimal when these two quantities
√
N/d and d ·N

are equal, which holds when d = N−1/3. Such a density gives complexity of
O(N

2
3 ) for SampleSet and at most N

2
3 queries to FindFunction. ut

In [10], the authors use a graph-theoretic approach to solve an instance of
hQMLE. They define GF (resp. GP) to be the linearity graph of F (resp. P),
where a vertex a is connected to all vertices x such that DaF(x) = 0 (resp.
DaP(x) = 0). Their algorithm can be instantiated from Algorithm 1 by taking
the predicate Pκ(a) : dim kerDaF = κ on the universe Mk,N (q), and taking for
FindFunction the polynomial-time solver from [18] for inhomogenous QMLE.
Applying Lemma 1 gives exactly the result from [10, Thm. 2]:

Corollary 2 Assuming a polynomial-time solver for the inhomogenous case of
QMLE, an hQMLE instance (N, k,F ,P) over Fq can be solved with complexity

and number of queries equal to O(q
2
3N ) with success probability of ≈ 63%.

This approach enables us to solve an MCE instance by reducing it to an in-
stance of hQMLE. For an MCE instance (k, n,m, C,D), we get an hQMLE instance

(n+m, k,F ,P). By Corollary 2, this leads to a complexity of O∗(q 2
3 (n+m)), with

a probability of 1− 1/e ≈ 63% of success. To be more precise, we take again the
predicate Pκ(a) : dim kerDaF = κ, but this time on the universe Mk,n+m(q),
where DaF lives. Theorem 2 from [16] can be used to show that the density
dκ does not depend on F , but only on the universe Mk,n+m(q). The optimal
κ given in Lemma 1, i.e. such that dκ = q−(n+m)/3, is harder to compute than
previously, but note that, interestingly enough, this does not affect the complex-
ity of Algorithm 1. To compute the optimal κ, we can use the following lemma,
taking a = k and b = n+m.

Lemma 3. Define the predicate Pκ : dim kerM = κ for M ∈ U = Ma,b(q).

Then the density of the predicate Pκ is dκ ≈ q−(κ
2+κ·(a−b)). ut

As we want dκ ≈ q−(n+m)/3, we need qκ
2+κ·(k−(n+m)) = q(n+m)/3, i.e.

κ = δ +

√
δ2 +

n+m

3
, δ =

(n+m)− k
2

. (4)

which resolves to κ =
√

n+m
3 when k = n+m.

In conclusion, given κ as above, we get our first result on the hardness of
MCE, compared to a straightforward enumeration.

Theorem 3. Assuming a polynomial-time solver for the inhomogenous case of
QMLE, an MCE instance (k, n,m,F ,P) over Fq can be solved with complexity

and number of queries equal to O∗(q 2
3 (n+m)) with success probability of ≈ 63%.

7



4.2 Second algorithm

The algorithm that we presented in the previous section does not take advantage
of the bilinear structure of an instance of MCE when viewed as hQMLE. In such
a case, the differential D(a,b)F of a k-dimensional bilinear form admits a special
structure, as it satisfies D(a,b)F(x,y) = F(a,y)+F(x,b). We denote by Fa the

k × n matrix of the linear map F(a,−) : Fnq → Fkq and by Fb the k ×m matrix

of F(−,b) : Fmq → Fkq . Similarly for P, we have Pa and Pb. We get

D(a,b)F(x,y) = ( Fb Fa )

(
x>

y>

)
.

When the polynomials are bilinear, one can see SampleSet in Algorithm 1 as
sampling both a ∈ Fnq ,b ∈ Fmq at the same time, until D(a,b)F has a kernel
of size κ. However in the bilinear case, a influences only the matrix Fa, and
b influences only Fb. Hence, we can sample a ∈ Fmq and b ∈ Fnq separately.
This hints that we can apply ideas from Algorithm 1 to the smaller universes
Ua =Mk,n(q) and Ub =Mk,m(q), where Fa and Fb live and use predicates in
these much smaller universes to find collisions much faster.

We denote by Fa the set of elements a for which dim kerFa is non-trivial,
i.e. Fa = {a ∈ Fnq | dim kerFa > 0}, and we define Fb, Pa and Pb similarly.

Lemma 4. Let µ : F → P be an isomorphism between two k-tuples of bilinear
homogenous quadratic polynomials F and P. We have the following properties:

1. For a ∈ Fa, (a,b) is a root of F for all b ∈ kerFa.
2. Fb =

⋃
a∈Fa

kerFa.
3. The isomorphism µ bijectively maps Fa → Pa and Fb → Pb.
4. When n = m and k > n, |Fa| = |Pa| ≈ |Fb| = |Pb| ≈ q2n−k−1.

Proof. 1. b ∈ kerFa is equivalent by definition to Fab
> = F(a,b) = 0.

2. This follows directly from 1.: b ∈ Fb means that there exists an a ∈ Fa such
that F(a,b) = 0, which is the same as b ∈ kerFa for this specific a.

3. Recall first that the isomorphism µ implies existence of matrices A,B,T
such that P(x,y) = F(xA,yB>)T.
Let a ∈ Fa. Then (a,b) is a root of F for all b ∈ kerFa. From the above,
(a′,b′) = (aA−1,b(B>)−1) is a root of P for all b ∈ kerFa, i.e. for all
b′ ∈ kerFa′AB = kerPa′ . Hence, a′ ∈ Pa. The isomorphism maps a to a′,
hence Fa to Pa. A similar argument gives Fb → Pb.

4. Note that by 3 we get |Fa| = |Pa|. Now, from Lemma 3 we see that the size
of these sets is dominated by elements with κ = 1 (a one-dimensional kernel).
From the same lemma, the density of κ = 1 elements is d1 = q−(1+1·(k−n).
Hence we expect d1 · qn = q2n−k−1 such elements. ut

Using Lemma 4, we can find collisions with full certainty whenever F and
P have non-trivial roots. By item 4, assuming n = m as the hardest case, this
happens when k < n+m with high probability, when k = n+m with probability
1
q , and when k > n + m almost never. From this, the resulting algorithm is
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simple: we compute the roots of F and P by computing kerFb for all b ∈ Fmq
to find non-trivial kerFb. This gives us sets Fa × Fb and Pa × Pb. If they are
non-empty, we feed them to the solver for a guaranteed collision. Otherwise, we
get no speed-up to solve MCE compared to Algorithm 1. This happens when
k > n + m. Furthermore, the sets Fa × Fb and Pa ×Pb can be split into zeros
F0 = {x ∈ Fn+mq |F(x) = 0} and non-zeros F = Fa × Fb \ F0, which reduces the
collision search to each of these sets. In summary, we have Algorithm 2.

Algorithm 2 Bilinear MCE-Solver, assuming n > m.

1: function SampleZeroes(F)
2: S, S0, Sa, Sb ← ∅
3: for all b ∈ Fm

q do
4: if dim kerFb > 0 then
5: Sb ← Sb ∪ {b}
6: Sa ← Sa ∪ kerFb \ {0}
7: S ← Sa × Sb

8: for all x ∈ S do
9: if F(x) = 0 then

10: S0 ← S0 ∪ {x}
11: S ← S \ S0

12: return S, S0

13: function CollisionFind(F ,P)
14: F,F0 ← SampleZeroes(F)
15: P,P0 ← SampleZeroes(P)
16: for all (x,y) ∈ F×P do
17: µ←FindFunction(x,y)
18: if µ 6= ⊥ then
19: return solution µ

20: for all (x,y) ∈ F0 ×P0 do
21: µ←FindFunction(x,y)
22: if µ 6= ⊥ then
23: return solution µ

24: return ⊥

Note that we have certainty of collision, hence we can take a single x ∈ F (or
equivalently F0) and compare it against every y ∈ P (or P0) to decrease the
number of queries to FindFunction. For technical reasons, our inhomogeneous
solver slightly prefers (x,y) ∈ F×P to (x,y) ∈ F0 ×P0. For parameters where
k is close to n+m, both sets are small, so the number of queries is limited. For
parameters where F and P become too large, one can decrease the number of
queries by switching to F0×P0 or by applying other (secondary) predicates. This
ensures the number of queries never exceeds qm, and there is reason to assume
the number of queries can be made much lower. The next theorem summarises
this subsection on using bilinearity to solve MCE.

Theorem 4. Assuming a polynomial-time solver for the inhomogenous case of
QMLE, an MCE instance (k, n,m,F ,P) over Fq with n > m and roots ex-
isting for F and P, can be solved using Algorithm 2 with O (qm) operations
in SampleZeroes and at most qm queries to the inhomogenous solver. For
m 6 k 6 n + m this amounts to a total complexity of O∗ (qm) for solving the
MCE instance (k, n,m,F ,P).

4.3 Experimental results

To confirm our theoretical findings, we solved randomly generated positive in-
stances of the MCE problem, using the two approaches presented in this paper.
First, we implemented the birthday-based Algorithm 1 in three steps. (1) We
randomly generate a positive instance (k, n,m, C,D) of MCE and reduce it to an
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instance (m+n, k,F ,P) of hQMLE. (2) We build the two sample sets for a pre-
defined predicate Pκ and we combine them to create pairs of potential collisions.
This step is performed using the open source implementation from [10]. (3) For
each pair we create an inhQMLE instance and we query an inhQMLE solver until
it outputs a solution for the maps S and T. Our inhomogenous solver consists of
reducing P(x)T−1 = F(xS), with S and T unknown, to a system of polynomial
equations and solving the resulting system using the F4 [17] implementation in
MAGMA [8]. The results of this experiment using κ = 5 are shown in Table 1.

Table1. Experimental results on solving the MCE problem using Algorithm 1.

m = n k Sample set size
Runtime (s) Runtime (s) Success
SampleSet inhQMLE solver probability

10 20 2 22 53 0.69

11 22 4 47 180 0.79

12 24 7 76 903 0.71

The second approach, described in Section 4.2, differs from the first one
only in step (2) above. The bilinear structure of hQMLE instances derived from
MCE instances can be exploited to have an improved algorithm for building the
sample sets and a more precise predicate that results in fewer queries to the
inhQMLE solver. The consequence of these two improvements to the runtime
can be observed in Table 2. Recall that, this approach can be used only when
there exist roots of F and P. Otherwise, the sampled sets are empty and the
instance is solved using Algorithm 1. Table 2 shows results of the case when the
sets are not empty and the probability of this case for the given parameters is
shown in the last column.

Table2. Experimental results on solving the MCE problem using Algorithm 2.

m = n k Sample set size
Runtime (s) Runtime (s) % instances

SampleZeros inhQMLE solver with roots

11

22 2.06 0.15 104 59
21 4.64 0.16 87 86
20 13.06 0.16 93 99
19 64.02 0.15 171 100

12

24 1.95 0.32 230 63
23 5.19 0.27 211 85
22 17.00 0.29 235 99
21 54.89 0.30 349 100

All experiments are for the case of q = 2 and all results are an average of 100
runs.

Acknowledgements. The authors thank Charles Bouillaguet for providing the
implementation resulting from [10].
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