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Abstract. By extending the Hamming metric from Fn
qm to Fm×n

q in a
natural way, we show that the limiting proportion of Fq-linear MDS codes
in Fm×n

q is 1 within the set of all matrix codes of the same dimension
as q → ∞. The same question of density of codes with subfield linearity
has already been studied and answered in the rank metric, see, e.g., [2,
3]. Our results differ from the recent results in [1] where it is shown that
Fq-linear MRD codes in Fn

qm are sparse for q → ∞, unless the minimum
rank distance d is d = 1 or n = d = 2.
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1 Introduction

Density questions have been well studied in coding theory, where the fraction of
codes with certain properties among all codes within a certain space is studied.
In particular, it has been long known that maximum distance separable (MDS)
codes are dense within the set of linear codes of some fixed length n over some
prescribed finite field Fq, for q → ∞. Similarly, it was shown in [2] that the
same is true for linear maximum rank-distance (MRD) codes in Fn

qm , for fixed n
and growing q or m. However, when the linearity is relaxed to linearity over the
subfield Fq, MRD codes are not dense anymore; on the contrary, it was shown in
[1] that Fq-linear MRD codes in Fn

qm are sparse for q → ∞, unless the minimum
rank distance d is d = 1 or n = d = 2.

This peculiar behavior of MRD codes gives rise to the question of the density
of Fq-linear MDS codes in Fn

qm . In Section 3 we will see that Fq-linear MDS codes
behave similar to Fqm-linear MDS codes concerning the density. For the special
case where q is a prime, these codes are known as additive codes, and have been
studied in the literature, recently in particular with applications to quantum
codes.

Density results like these have applications both in coding theory and cryp-
tography. In particular, they represent the probability that a randomly chosen
(linear) code has the required property (e.g., being MDS or MRD).

Our paper is structured as follows. In the following section we describe the
preliminary definitions about MDS codes. In Section 3 we determine an upper
and a lower bound for the fraction of MDS codes in the set of all Fq-linear codes
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in Fn
qm . For this we represent the codes as matrices in Fm×n

q . Furthermore, we
determine the asymptotics (and hence the densities) of these fractions in q and
in m. We conclude this paper in Section 4.

2 Preliminaries

We start by introducing the terminology used throughout the paper and recall
some facts from classical coding theory. For more details and proofs we refer the
interested reader to [5].

Let q be a prime power and k, n,m be non-negative integers. The finite field
of cardinality q is denoted by Fq and an extension field of extension degree m is
denoted by Fqm . Let Γ = {γ1, . . . , γm} be a basis of Fqm as an Fq-vector space.
Further we define the isomorphism

ϕΓ : Fqm → Fm
q ,

m∑
i=1

αiγi 7→

 α1

...
αm

 =: [α]Γ ,

which extends to the isomorphism

ΦΓ : Fn
qm → Fm×n

q , (α1, . . . , αn) 7→ ([α1]Γ , . . . , [αn]Γ ).

The q-ary binomial coefficient, denoted by

[
n

k

]
q

, counts the number of k-

dimensional vector subspaces of Fn
q . It is well-known that the identity

[
n

k

]
q

=

k−1∏
i=0

qn − qi

qk − qi

holds.

Definition 1. Let X ∈ Fm×n
q . We define the column Hamming weight of X by

w̃H(X) := |{j ∈ [n] | Xej ̸= 0}|,

where ej denotes the jth unit vector in Fn
q .

Note that the column Hamming weight corresponds to the usual Hamming
weight of the preimage under ΦΓ , for any Fq-basis Γ of Fqm , i.e.,

wH(v1, . . . , vn) = w̃H(ΦΓ (v1, . . . , vn))

for (v1, . . . , vn) ∈ Fn
qm . Since the (column) Hamming weight satisfies the trian-

gular inequality we can define a distance on Fm×n
q as follows:
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Definition 2. Let X,Y ∈ Fm×n
q . Then the column Hamming distance between

X and Y is defined as

d̃H(X,Y ) := w̃H(X − Y ).

We call a Fq-linear subspace C of the metric space (Fm×n
q , d̃H) a linear Hamming-

metric matrix code. The minimum column Hamming distance of the code C is

d̃H(C) := min{w̃H(X) | X ∈ C \ {0}}.

A [m × n, k, d]q-code is a linear Hamming-metric matrix code in Fm×n
q of Fq-

dimension k and minimum column Hamming distance d.

Let 2 ≤ d ≤ n and C ⊆ Fm×n
q be a [m × n, k, d]q-code. For X ∈ C with

columns x1, . . . , xn we write X = (x1, . . . , xn). Then the projective map ρ : C →
Fm×(n−d+1)
q given by (x1, . . . , xn) 7→ (xd, . . . , xn) must be injective. Otherwise

ρ(X) = ρ(X ′) for some X,X ′ ∈ C, X ̸= X ′. But then d̃H(X,X ′) ≤ d− 1 which
is a contradiction to d̃H(C) = d. Hence |C| ≤ qm(n−d+1) and since the dimension
of the code C is given by k = logq(|C|) we can state the Singleton bound in the
context of Hamming-metric matrix codes:

Theorem 1. Let C ⊆ Fm×n
q be a nonzero [m× n, k, d]q-code. Then

d̃H(C) ≤ n− k

m
+ 1.

Definition 3. A [m × n, k, d]q code C ⊆ Fm×n
q with 2 ≤ d ≤ n and dimension

k = m(n−d+1) is called a MDS-code (maximum distance separable code) and
denoted as [m× n, k]q-MDS code.

Recalling the weight preservation of ΦΓ , we get that, if C ⊆ Fn
qm is a [n, k, d]qm -

code, then ΦΓ (C) is a Hamming-metric matrix code of dimension mk over Fq,
with the same minimum distance as C. Thus, a [m × n, k, d]q Hamming-metric
matrix code C is MDS, if and only if Φ−1

Γ (C) is MDS for an arbitrary Fq-basis Γ
of Fqm .

3 Proportions of MDS Matrix Codes

First we state the results and notations taken from [1] which we use later for
estimating the proportion of MDS matrix codes.

Notation 1 [1, Notation 2.1] Let q be a prime power and m,n, k, l be non-
negative integers with mn ≥ max{3, k} and nm− 2k ≤ l ≤ nm− k. Define

υq(nm, k, l) :=

[
nm

k

]
q

− 2qk(nm−k) + q(2k−nm+l)(nm−k)
nm−k−1∏

i=l

(qnm−k − qi).
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Theorem 2. [1, Theorem 3.6] Let mn ≥ 3 and let 1 ≤ k ≤ mn − 1. Let A
be a collection of subspaces A ⊆ Fm×n

q with at least two elements that all have
codimension k. Let F be a collection of k-dimensional spaces W ⊆ Fm×n

q that
intersect in at least one subspace A ∈ A and define

lmax := max{dim(A ∩A′)|A,A′ ∈ A, A ̸= A′},

then

υq(nm, k, nm− k)2|A|
υq(nm, k, nm− k) + (|A| − 1)υq(nm, k, lmax)

≤ |F| ≤ |A|υq(nm, k, nm− k).

We now turn to the question of estimating the proportion of MDS-matrix
codes within the family of codes having the same dimension. We adopt the
notation of [4].

Definition 4. Suppose that 1 ≤ n,m are integers and let k ∈ {m, 2m, . . . , nm},
as for other choices of the dimension [m × n, k]q-MDS codes do not exist. We
define

Tm,n,k
q := {C ∈ Fm×n

q | dim(C) = k}

T̂m,n,k
q := {C ∈ Tm,n,k

q | dH(C) = n− k

m
+ 1},

(1)

thus T̂m,n,k
q is the set of [m × n, k]q-MDS codes and Tm,n,k

q counts the number

of linear codes C ⊆ Fm×n
q of dimension k. The fraction |T̂m,n,k

q |/|Tm,n,k
q | de-

scribes the proportion of MDS-matrix codes among the space of all k-dimensional
matrix-codes of Fm×n

q .

We study the asymptotic proportion of MDS-matrix codes as the field size q
tends to infinity and as their column length m tends to infinity.

1. If |T̂m,n,k
q |/|Tm,n,k

q | = 0 as q → ∞, respectively m → ∞, then the family of
[m× n, k]q-MDS codes is called sparse.

2. If |T̂m,n,k
q |/|Tm,n,k

q | = 1 as q → ∞, respectively m → ∞, then the family of
[m× n, k]q-MDS codes is called dense.

The proportion above relates to the probability that k randomly and inde-
pendently choosen matrices A1, . . . , Ak ∈ Fm×n

q generate a [m×n, k]q-MDS code

which means that for all (λ1, . . . , λk) ∈ Fk
q \ {0} the matrix

∑k
i=1 λiAi has at

least n − k
m + 1 nonzero columns. Intuitively, this probability approaches 1, as

the field size q grows. The following two theorems show that this intuition is
indeed correct.

Theorem 3. Suppose that 1 ≤ n,m are integers and let k ∈ {m, 2m, . . . , (n −
1)m}. Then the proportion of [m× n, k]q-MDS codes is bounded by

max(0, Lk
q (m,n)) ≤

|T̂m,n,k
q |

|Tm,n,k
q |

≤ min(1, Uk
q (m,n)),
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where

Lk
q (m,n) := 1−

(
n

k/m

)
υq(nm, k,mn− k)[

mn

k

]
q

Uk
q (m,n) := 1−

(
n

k/m

)
υq(mn, k,mn− k)2[

mn

k

]
q

(
υq(nm, k, nm− k) + (

(
n

k/m

)
− 1)υq(nm, k,m(n− 1)− k)

) .
Proof. Define the family of sets Sn−k/m := {S ⊆ [n] | |S| = n − k

m} and the
(mn − k)-dimensional linear spaces Fm×n

q (S) := {A ∈ Fm×n
q | Aei = 0 ∀i /∈ S}.

By this definition every A ∈ Fm×n
q (S) has Hamming weight at most n− k

m . Let
A = {Fm×n

q (S) | S ∈ Sn−k/m} be the collection of those linear spaces. Then

|A| =
(

n
k/m

)
and any code C ∈ Tm,n,k

q that intersects one of the spaces in A
non-trivially has minimum Hamming distance at most n − k

m . Furthermore let

C ∈ Tm,n,k
q be a code with d̃H(C) ≤ n − k

m , i.e. there exists a nonzero matrix
X ∈ C with potentially nonzero columns xi1

, . . . , xin−k/m
(and else zero). Then

S := {i1, . . . , in−k/m} ∈ Sn−k/m and thus the [m×n, k]q-MDS codes are precisely
those subspaces that intersect none of the spaces in A. Furthermore we have

max
S,S′∈Sn−k/m

S ̸=S′

{dim(Fm×n
q (S) ∩ Fm×n

q (S′))} = m(n− 1)− k.

Now the desired bounds follow from Theorem 2.

Table 1. The table below shows the lower and upper bound, calculated with SageMath
9.4, for the proportion of [m× n, k]q-MDS codes as stated in Theorem 3.

n q m k Lower Bound Upper Bound

5 2 2 2 0 0.107
5 2 2 6 0 0.076
5 2 8 8 0 0.075
5 2 8 16 0 0.039
5 337 2 2 0.985 0.985
5 337 2 6 0.97 0.971
5 337 8 8 0.985 0.985
5 337 8 16 0.97 0.971

We can now state the asymptotics of the proportion as the field size q tends to
infinity.

Theorem 4. Suppose that 1 ≤ n,m are integers and let k ∈ {m, 2m, . . . , nm}.
Then

lim
q→∞

|T̂m,n,k
q |

|Tm,n,k
q |

= 1,
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that is [m×n, k]q-MDS codes are dense within all linear codes of a fixed dimen-
sion.

Proof. If k = mn the statement of the theorem directly follows, as the minimum
column Hamming distance of the code Fm×n

q is 1. Hence this unique code of
dimension mn is MDS. Now let k < mn, substituting l = mn − k into the
formula given in Notation 1, the lower bound given in Theorem 3 can be written
as

Lk
q (m,n) = 1−

(
n

k/m

)
+

(
n

k/m

)
· q

k(nm−k)[
mn

k

]
q

.

Using the asymptotic estimate[
mn

k

]
q

∈ Θ(qk(mn−k)) as q → ∞,

the statement of the theorem follows.

We now consider the asymptotic proportion of MDS-codes as their column
length tends to ∞. First we state the asymptotics for the number given in Nota-
tion 1. Before giving the explicit results for this quantity, we introduce the Euler
function and give an asymptotic estimate of the q-binomial coefficient involving
this function.

Definition 5. [6, Section 14] The Euler function ϕ : (−1, 1) → R is defined by

x 7→
∞∏
i=1

(1− xi).

Lemma 1. [1, Section 6] Suppose that m ≥ 1 and a > b > 0 are integers. Then[
ma

mb

]
q

∼ qm
2b(a−b)

ϕ(q−1)
.

Proof.[
ma

mb

]
q

=
qmamb

∏mb−1
i=0 (1− qi−ma)

qmbmb
∏mb−1

i=0 (1− qi−mb)

= qm
2b(a−b)

∏ma
i=m(a−b)+1

(
1− q−i

)∏mb
i=1 (1− q−i)

= qm
2b(a−b)

∏ma
i=1

(
1− q−i

)∏mb
i=1 (1− q−i)

∏m(a−b)
i=1 (1− q−i)

∼ qm
2b(a−b)

ϕ(q−1)
asm → ∞,

by the definition of the Euler function.
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Lemma 2. [1, Lemma 6.5] Suppose that 1 ≤ n,m, let i be an integer and let
k ∈ {m, 2m, . . . , (n−1)m}. For m → ∞ the following asymptotic estimates hold:

υq(mn, k,mi) ∼

{
qk(mn−k) · (1−ϕ(q−1))2

ϕ(q−1) if 0 ≤ i ≤ n− k
m − 1

qk(mn−k) · (1−ϕ(q−1))
ϕ(q−1) if i = n− k

m

Using similar techniques as in the proof of Theorem 6.6 in [1], we can now prove
an asymptotic bound for the proportion of MDS-matrix codes as m → ∞.

Theorem 5. Suppose that 1 ≤ n,m are integers and let k = mi with i ∈ [n−1].
Then we have

lim sup
m→∞

∣∣∣T̂m,n,k
q

∣∣∣∣∣∣Tm,n,k
q

∣∣∣ ≤ ϕ(q−1)

ϕ(q−1) +
(
n
i

)
(1− ϕ(q−1))

< 1,

i.e., [m× n, k]q-MDS codes are not dense with respect to the parameter m.

Proof. Define the sequences (am)m, (bm)m, (cm)m by

am := υq(mn, k,mn− k),

bm :=

((
n

k/m

)
− 1

)
υq(mn, k,m(n− 1)− k),

cm :=

(
n

k/m

)
υq(mn, k,mn− k)2[

mn

k

]
q

.

Then the upper bound given in Theorem 3 can be written as∣∣∣T̂m,n,d
q

∣∣∣∣∣∣Tm,n,d
q

∣∣∣ ≤ am + bm − cm
am + bm

.

Using Lemma 1 and Lemma 2 the asymptotic behaviour of the three sequences
above can be described by

am ∼ qk(mn−k) · (1− ϕ(q−1))

ϕ(q−1)
,

bm ∼ qk(mn−k) ·
((

n

i

)
− 1

)
· (1− ϕ(q−1))2

ϕ(q−1)
,

cm ∼ qk(mn−k) ·
(
n

i

)
· (1− ϕ(q−1))2

ϕ(q−1)
.

The three estimates are of the form am ∼ afm, bm ∼ bfm and cm ∼ cfm, where
fm = qk(mn−k) and a, b, c ∈ R are positive constants such that

a+ b− c

a+ b
=

ϕ(q−1)

ϕ(q−1) +
(
n
i

)
(1− ϕ(q−1))

< 1.
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Taking the limit superior as m → ∞ we obtain

lim sup
m→∞

∣∣∣T̂m,n,k
q

∣∣∣∣∣∣Tm,n,k
q

∣∣∣ ≤ ϕ(q−1)

ϕ(q−1) +
(
n
i

)
(1− ϕ(q−1))

.

4 Conclusion

We derived an upper and a lower bound on the fraction of MDS codes within the
set of all Fq-linear codes of fixed dimension in Fn

qm . We showed that for q → ∞
this fraction approaches 1, whereas for m → ∞ this fraction is strictly smaller
than 1. This behavior differs from the one of Fqm-linear MDS codes that are
dense for both q and m, as well as from the one of Fq-linear MRD codes that
are sparse with respect to q.
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