
On the hardness of monomial prediction and
zero-sum distinguishers for Ascon

Pranjal Dutta ?1, Mahesh Sreekumar Rajasree ??2, and Santanu Sarkar3

1 Chennai Mathematical Institute, India pranjal@cmi.ac.in
2 IIT Kanpur, India mahesr@cse.iitk.ac.in

3 IIT Madras, India santanu@iitm.ac.in

Abstract. In this paper, we focus on the monomial prediction prob-
lem in the quadratic setting: decide whether a particular monomial m
is present in a composite function f := fr ◦ fr−1 ◦ . . . f0, where fi are
quadratic functions. This problem has a strong connection with the secu-
rity of symmetric-key primitives. Dinur and Shamir proposed the cube at-
tack for distinguishing a cryptographic primitive from a random function.
Essentially it exploits the fact that a set of monomials are absent from
the polynomial representation of the cryptographic primitive. Monomial
prediction, in a more general setting, over any finite field, is known to
be NP-hard. Here, we show that this is true even in the quadratic setting.
The proof method is very different from the previous ones and far from
obvious. On the other hand, we also present several new zero-sum dis-
tinguishers for 5-round Ascon, which is one of the ten finalists for NIST
light weight cryptography standardization competition.

Keywords: cube testers · boolean function · monomial prediction · NP
-hardness · Ascon.

1 Introduction

Dinur and Shamir [2] proposed the cube attack against symmetric-key primitives
with a secret key and a public input. It has since evolved into a universal tool for
assessing the security of cryptographic primitives, and it has been successfully
applied to a variety of symmetric primitives. Roughly speaking, the output bit of
a cipher can be seen as an unknown Boolean polynomial f(x,v), over F2, where
x = (x0, . . . , xn−1) is a vector of secret input variables, and v = (v0, . . . , vm−1)
is a vector of public input variables. Given a Boolean function f(x,v) ∈ F2[x,v]
and a monomial t ∈ F2[v], one can express f(x,v) as

f(x,v) = t · pt(x,v) + qt(x,v) ,

such that none of the monomials in qt(x,v) is divisible by t. The function pt is
called the superpoly of t in f . Let I = (i1, i2, . . . , ik) be the index subset such

? Supported by Google Ph.D. Fellowship.
?? Supported by Prime Minister’s Research Fellowship (PMRF).



that t =
∏
i∈I vi. Then, it can be easily verified that for any constants cj ,∀j /∈ I,∑

(vi1 ,vi2 ,...,vik )∈F
k
2

vj=cj ,∀j /∈I

f(x,v) = pt(x, c) .

A cube tester basically computes the above summation (called cube sum) for
a carefully chosen monomial t such that its superpoly pt is equal to constant zero.
This serves as a distinguishing attack between f and a random polynomial.

To broaden the integral and higher-order differential distinguishers, Todo [10]
introduced the division property. Soon division property based cube attack be-
came a hot topic in the community. In [5], a new technique termed monomial
prediction was proposed that captures the algebraic basics of various attempts to
improve the detection of division property. The goal was simple: detect a mono-
mial xu1 in the product yu2 of any output bits of a vectorial Boolean function
y = f(x). Further, this monomial prediction approach was shown to be equiva-
lent to the proposed three-subset bit-based division property without unknown
subset [4].

A dive into complexity theory. From a theoretical perspective, how hard
is monomial prediction for a given (blackbox) polynomial f? In [6], Kayal con-
sidered this very computational problem from a complexity theoretic point of
view, which can be broadly (re)stated as follows: Given a blackbox access to
an n-variate degree-d polynomial f(x), over a finite field F and a monomial
xe = xe11 · · ·xenn , determine the coefficient of xe in f(x). Before Kayal, simi-
lar problem was also studied by Malod [7] in his PhD thesis, from an algebraic
complexity theoretic lens.

Kayal termed this problem as CoeffSLP and showed that it is #P-complete
(for a self-contained proof, see [6, Appendix A]). We recall that #P essentially
captures the number of solutions of a given instance, and thus obviously a #P
problem must be at least as hard as the corresponding NP problem. However,
roughly speaking, for most of the stream ciphers, f can be thought as a com-
position of a bunch of linear and quadratic Boolean functions, and not arbitrary
compositions. This makes the monomial prediction paradigm both theoretically
and practically interesting! So, we restrict ourselves to this particular case and
ask the complexity of the following problem defined below.

Problem 1. Given a composition of quadratic functions f := fr ◦ fr−1 ◦ . . . f0,
and a monomial m, where each fi : Fn2 −→ Fn2 , decide the coefficient of m in f .

Our contributions. Our paper revolves around the above problem. Though it
may sound obvious to be NP-hard, the proof is far from the obvious. We consider
a slightly general parameters and indeed show that Problem 1 is NP-hard; for
details see Theorem 1 and its proof in section 3.

From a practical point of view, we exploit superpoly and monomial predic-
tion to give better cube attack for Ascon. Most importantly, these attacks are
not restricted to Ascon, and can be used in other cryptosystems as well. Ascon [3]



is one of the elegant designs of authenticated encryption with associated data
(AEAD) that was selected as the first choice for lightweight applications in the
CAESAR competition, which also has been submitted to NIST lightweight cryp-
tography standardization. On March 29, 2021, NIST announced ten finalists and
Ascon is still on the race. It has been in the literature for a while, however, there
has been no successful AEAD which is secure and at the same time lighter than
Ascon. In section 4, we present a new zero-sum distinguisher for 5-round Ascon
with complexity 214 which improves the best known cube distinguishers [8] by a
factor of 22.

Brief Comparison with the previous methods. In the conventional cube
attack papers, one of the obvious ways is to find an upper bound d on the degree
of f(x,v). Once the upper bound is found, it is not hard to show that a d + 1-
sized cube tester works. Moreover, typically the previous methods wanted pt,
the superpoly to be constant zero.

In [5], the authors usesd MILP to find the monomial with the largest ham-
ming weight and odd number of monomial trails, to find the algebraic degree of
f(x,v). This is where our method differs from them. We observe that, as long
as each monomial in the superpoly pt contains a public variable or is a constant,
the indices corresponding to t can be used as a cube tester! Note that, this is
directly related to Problem 1. In section 4, we give a procedure that computes
an approximate polynomial f ′(v) for f(x,v) such that if a monomial m ∈ F2[v]
is not present in f ′(v), then there does not exist any monomial p · m where
p ∈ F2[x] in f(x,v). This helps us in building new zero-sum distinguishers for
Ascon. For details, see section 4.

2 Preliminaries and Notations

2.1 Description of Ascon

Dobraunig et al. designed Ascon. It is a permutation-based family of authenti-
cated encryption with associated data algorithms (AEAD). The Ascon AEAD
algorithm takes as inputs a secret key K, a nonce N , a block header AD (a.k.a
associated data) and a message M . It then outputs a ciphertext C of same length
as M , and an authentication tag T which authenticates the associated data AD
and the message M . There are two variants of Ascon, namely Ascon-128 and
Ascon-128a.

2.2 The Ascon Permutation

The core permutation p of Ascon is based on substitution permutation network
(SPN) design paradigm. It operates on a 320-bit state arranged into five 64-bit
words and is defined as p : pL ◦ pS ◦ pC . The state at the input of r-th round
is denoted by Xr

0‖Xr
1‖Xr

2‖Xr
3‖Xr

4 while Y r
0 ‖Y r

1 ‖Y r
2 ‖Y r

3 ‖Y r
4 represents the state

after the pS layer. We use Xr
i [j] (resp. Y r

i [j]) to denote the j-th bit (starting
from left) of Xr

i (resp. Y r
i ). We now describe the three steps pC , pS , and pL in

detail (superscripts are removed for simplicity).



IV‖K‖N 320 pa

⊕

0∗‖K

c

⊕r

A1

pb
⊕

As

pb

⊕

0∗‖1

⊕

P1 C1

pb
⊕

Pt−1 Ct−1

pb
⊕

Pt Ct

⊕

K‖0∗

pa

⊕

K

T

Initialization Associated Data Plaintext Finalization

Fig. 1. Ascon’s mode of operation (encryption phase)

Table 1. Ascon variants and their recommended parameters

Name State size Rate r
Size of Rounds

Key Nonce Tag pa pb IV

Ascon-128 320 64 128 128 128 12 6 80400c0600000000

Ascon-128a 320 128 128 128 128 12 8 80800c0800000000

Addition of constants (pC). We add an 8-bit constant to the bits 56, · · · , 63 of
word X2 at each round.

Substitution layer (pS). We apply a 5-bit Sbox on each of the 64 columns.
Let (x0, x1, x2, x3, x4) and (y0, y1, y2, y3, y4) denote the input and output of the
Sbox, respectively. Then the algebraic normal form (ANF) of the Sbox is given in
Equation 1. Note that here xi and yi are the bits of word Xi and Yi, respectively.

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

(1)

Linear diffusion layer (pL). Each 64-bit word is updated by a linear operation
Σi which is defined in Equation 2. Here ≫ is the right cyclic shift operation
over a 64-bit word.

X0 ← Σ0(Y0) = Y0 + (Y0 ≫ 19) + (Y0 ≫ 28)

X1 ← Σ1(Y1) = Y1 + (Y1 ≫ 61) + (Y1 ≫ 39)

X2 ← Σ2(Y2) = Y2 + (Y2 ≫ 1) + (Y2 ≫ 6)

X3 ← Σ3(Y3) = Y3 + (Y3 ≫ 10) + (Y3 ≫ 17)

X4 ← Σ4(Y4) = Y4 + (Y4 ≫ 7) + (Y4 ≫ 41)

(2)



3 On the hardness of monomial prediction: Answering
Problem 1

To show the hardness, formally, we define the following language.

L := {(f,m) | coefm(f1) = 1 , where (f1, . . . , fnr+1
) = gr ◦ gr−1 ◦ . . . g0 ,

and gi : Fni
2 −→ Fni+1

2 , ni ∈ N ∀ i ∈ [r + 1],with n0 = n,

monomial m ∈ F2[x1, . . . , xn], and deg((gi)j) ≤ 2 } .

In general, we will be working with r, ni = poly(n) (so that one can think of the
input complexity with respect to parameter n). Given (f,m) as an input where
f is described by providing a compact representation of gi’s, we want to decide
whether (f,m) ∈ L. Note that this maybe ‘easier’ than solving a large systems
of multivariate polynomial equations over F2, and thus one cannot rigorously
argue the hardness. However, we show that deciding (f,m) ∈ L is NP-hard.

Theorem 1 (Hardness result). Given a composition of quadratic functions
f and a monomial m, deciding whether (f,m) ∈ L is NP-hard.

Remark 1. This proof can be adapted to work over finite field F or integer ring Z.

Proof. The proof is motivated from algebraic complexity theory and uses the
Hamiltonian Cycle polynomial, HCn, defined below, which is a well-known VNP-
complete4 polynomial over F2 [1,7]. Remarkably the motivation of studying the
hardness of HCn is quite different from ours and concerns arithmetic circuit
complexity while in this paper, we are interested in Boolean hardness results!

Recall the definition of Hamiltonian cycle: it is a closed loop on a graph where
every node (vertex) is visited exactly once. It is well-known that the problem Odd

Hamiltonian Cycle – deciding whether a given graph G = (V,E) has an odd
number of Hamiltonian cycles, is NP-hard. We now show a reduction from Odd

Hamiltonian cycle≤P L this implying that our problem is NP-hard.
Define the Hamiltonian Cycle polynomial (HCn) for a graph with n nodes,

with the adjacency matrix (xi,j)1≤i,j≤n (they are just elements from {0, 1}), as
follows:

HCn (x1,1, . . . , xn,n) =
∑
σ∈Sn

n∏
i=1

xi,σ(i) ,

where Sn is the symmetric group on a set of size n and the sum is taken over
all n-cycles of Sn (i.e. , every monomial in HCn corresponds to a Hamiltonian
cycle in the complete directed graph on n vertices). Here is the crucial lemma.

Lemma 1 (Composition lemma). Let G = (V,E) be a given graph with the
adjacency matrix x = (xi,j)i,j∈[n]. Let y = (y1, . . . , yn) and z = (z1, . . . , zn) be
2n variables. Then, there exist g0, . . . , gn, polynomial maps such that

4 The class VNP, Valiant’s NP, is known as the algebraic NP class in the algebraic
complexity theory.



(i) g0 : Fn
2+2n

2 −→ F2n2

2 , and gi : F2n2

2 −→ F2n2

2 , for i ∈ [n], with deg((gi)j) ≤ 2,
and

(ii) coefy1···yn·z1···zn(f1(x,y, z)) = HCn(x), where (f1, . . . , f2n2) = gn ◦ . . . ◦ g0.

The above lemma directly implies that for a given graph G = (V,E) with adja-
cency matrix (xi,j)i,j , (f := gn ◦ . . . ◦ g0,m := y1 · · · ynz1 · · · zn) ∈ L ⇐⇒ G has
odd number of Hamiltonian cycles, which would finish the proof.

Proof of Lemma 1. In the proof, we will often interchange k-th coordinate with
(i, j)-th position, for k ∈ [n2], where k − 1 = (i− 1) + n(j − 1), and i, j ∈ [n].
Since, k − 1 ∈ [0, n2 − 1] can be uniquely written as (i− 1) + n(j − 1), for some
i, j ∈ [n], there is a one-to-one correspondence. We divide the proof into two:

Part 1 : Construction of gi’s. Define the polynomial map g0 : Fn
2+2n

2 −→
F2n2

2 , by defining each coordinate of g0, namely (g0(x,y, z))k, for k ∈ [2n2] by:

(g0(x,y, z))k :=

{
xi,j , when k ≤ n2,where k − 1 = (i− 1) + n(j − 1),

yi · zj , when n2 < k ≤ 2n2,where k − 1− n2 = (i− 1) + n(j − 1).

In the above, we used the fact that k − 1 − n2 ∈ [0, n2 − 1] and hence the one-
to-one correspondence exists. Trivially any coordinate (g0(x,y, z))k is at most
a quadratic polynomial.

Now define g1 : F2n2

2 −→ F2n2

2 , on 2n2 variables w := (wi,j)i,j∈[n] and s :=
(si,j)i,j∈[n], as follows:

(g1(w, s))k :=

{
wi,j · si,j , when k ≤ n2,where k − 1 = (i− 1) + n(j − 1),

(g1(w, s))k−n2 , when n2 < k ≤ 2n2.

Basically, g1 repeats the first n2 coordinates. Again, by definition, each ordinate
is a quadratic polynomial. Now, we can define g` : F2n2

2 −→ F2n2

2 , again on 2n2

variables (w, s), for ` > 1, as follows:

(g`(w, s))k :=

{∑n
r=1 wi,r · sr,j , when k ≤ n2,where k − 1 = (i− 1) + n(j − 1),

si,j , when n2 < k ≤ 2n2,where k − 1− n2 = (i− 1) + n(j − 1).

It is easy to see that, by definition, g`, restricted to the last n2 coordinates, is
an identity map. Also, trivially, each coordinate is a quadratic polynomial.

Part 2 : Getting HCn as a coefficient of gn ◦ . . . ◦ g0. We will prove two
claims about the structure of the compositions. Here is the first claim.

Claim 1. For any ` ≥ 1, we have (g`(. . . (g0(x,y, z) . . .)k = xi,j · yi · zj , for
k ∈ [n2 + 1, 2n2], where k − 1− n2 = (i− 1) + n(j − 1).

Proof. First let us prove this for ` = 1. Since, there is a one-to-one correspon-
dence between the k-th coordinate and the pair (i, j), by definition,

g1(g0(x,y, z))k = g1(g0(x,y, z))k−n2 = xi,j · yi · zj .

Since, g` is an identity map in the last n2 coordinates, for ` > 1, the conclusion
follows immediately.



We remark that, in fact, in the above, it can be easily seen that g1(g0(x,y, z))k =
xi,j · yi · zj , for k ∈ [n2], where k− 1 = (i− 1) +n(j− 1). However, since ` grows,
g` ◦ . . . g0 looks complicated. Here is the main claim, about the structure of the
composition, for the first n2 coordinates.

Claim 2 (Main claim). For any ` ≥ 2, and k ∈ [n2], such that (k − 1) = (i −
1) + n(j − 1), the following holds:

(g`(. . . (g0(x,y, z) . . .))k

= yizj ·
∑

1≤m1,...,m`−1≤n

xi,m1
xm1,m2

· · ·xm`−2,m`−1
xm`−1,j ·

(
`−1∏
s=1

yms
zms

)
.

Proof of the Claim. We will prove this by induction on `.

Base case: ` = 2. For ` = 2, by definition, we have

(g2(g1(g0(x,y, z))k =

n∑
r=1

(xi,ryizr) · (xr,jyrzj)

= yizj ·
∑

1≤r≤n

xi,rxr,jyrzr ,

as desired. In the above, we implicitly used the (i, r)-th coordinate, by which
we mean the k′-th coordinate such that k′ − 1 = (i− 1) + n(r − 1), the similar
correspondence as we mentioned at the beginning of the proof of Lemma 1. Thus,
base case is true.

Inductive step: (` + 1)-th step. Let us assume that it is true for some `.
To show this for ` + 1, again, by definition (and the one-to-one correspondence
between k and (i, j)), we have

(g`+1(. . . (g0(x,y, z) . . .)k

=

n∑
r=1

(g`(. . . (g0(x,y, z) . . .)i,r · (xr,jyrzj)

=
∑

1≤r≤n

 ∑
1≤m1,...,m`−1≤n

xi,m1
xm1,m2

· · ·xm`−2,m`−1
xm`−1,r ·

(
`−1∏
s=1

yms
zms

)
· yizr

 · (xr,jyrzj)
= yizj ·

∑
1≤m1,...,m`−1,m`≤n

xi,m1
xm1,m2

· · ·xm`−1,m`
xm`,j ·

(∏̀
s=1

yms
zms

)
.

The second last equality is by induction hypothesis while in the last equality,
we renamed r by m`. In the above, by (i, r)-th coordinate, again, we mean k′-th
coordinate such that k′ − 1 = (i− 1) + n(r− 1). This finishes the induction and
the conclusion as well. ut



Claim 2 with k = 1 (i.e. i = j = 1) and ` = n, gives the following identity:

(gn(. . . (g0(x,y, z) . . .)1

= y1z1 ·
∑

1≤m1,...,mn−1≤n

x1,m1
xm1,m2

· · ·xmn−2,mn−1
xmn−1,1 ·

(
n−1∏
s=1

yms
zms

)
.

The coefficient of the monomial y1z1 · · · ynzn is the Hamiltonian Cycle polyno-
mial HCn(x), because for any Hamiltonian cycle of length n, we must choose
m1, . . . ,mn−1, each between 2 and n, so that such a choice generates the mono-
mial x1,m1

xm1,m2
· · ·xmn−2,mn−1

xmn−1,1. Since, it visits each node exactly once,
y1 · · · ynz1 · · · zn is also generated with the x-monomial. This finishes the proof
of the part 2. ut

Since, Lemma 1 is now proved, the NP-hardness follows, as well. ut

4 New Zero-Sum Distinguishers for Ascon

In this section, we present several distinguishers for 5-round Ascon-128. As shown
in Figure 1, X0

0 is set to IV whereas, X0
1 , X

0
2 are set to key bits (secret bits)

and X0
3 , X

0
4 to nonce bits (public bits). Since, the ciphertext C1 is obtained by

XOR-ing the message P1 to X5
0 , we will consider zero-sum distinguisher at X5

0

positions only.
In [8], the authors found a distinguisher with complexity 216 for 5-round

Ascon by setting X0
3 = X0

4 and finding an upper bound on the algebraic degree in
nonce variables using division property. In our experiments, we also set X0

3 = X0
4 .

The road-map. We first show that there is a degree-15 monomial that is not
present in X5

0 [1], and thus, we find a 15 sized cube as a zero-sum distinguisher.
Observe that it is impossible to construct the exact polynomials of X5

0 with
respect to the key and cube variables because the number of key variables is
128, and this naturally results in a huge number of monomials.

Instead of finding the exact polynomial in X5
0 [1], we will come up with an

approximate polynomial which contains the cube variables only. The approximate
polynomial has the following property.

Property 1. If the exact polynomial has a monomial p · q where p ∈ F2[v] and
q ∈ F2[x], then the approximate polynomial will contain p.

In other words, if a monomial p is missing from the approximate polynomial,
then it is guaranteed that p · q for any q ∈ F2[x] would not be present in the
exact output polynomial. But, this does not say anything about the presence or
absence of p · q′ in the exact polynomial where q′ ∈ F2[v]. We do not have to
worry about such terms because p · q′ can be ignored by setting the appropriate
nonce variables to 0, to satisfy q′ = 0.

To build these approximate polynomials, we will work over the ring of integers
Z, rather than F2. We start by building the exact polynomial over Z up-to 2
rounds, i.e., we will consider both key and cube variables and replace XOR with
integer + and · with integer ×. This will give rise to two issues.



1. Firstly, the coefficients of the monomials will blow-up. This can be handled
by reducing the polynomial modulo 2.

2. Secondly, the monomials are no longer multi-linear. This also can fixed by
reducing the polynomial by modulo v2i − vi,∀i.

Observe that as an alternative, we can simply work over F2, find the exact
polynomials and then convert them into polynomials over Z. But, this approach
seem to be time consuming in SAGE [9].

Next, we get rid of the key variables by evaluating the polynomial at xi =
1,∀i. Again, the coefficients may blow-up which is handled by replacing all non-
zero coefficients with 1. Observe that these new polynomials have Property 1.
We will apply the rest of the 3 rounds on these approximate polynomials to get
the approximate polynomials for X5

0 [1]. In our experiment, while considering
cube indices 0, 1, . . . , 14, the approximate polynomial for X5

0 [1] does not contain

the monomial
∏14
i=0 vi. This gives us a zero-sum distinguisher for 5-round with

complexity 215. Observe that this experiment is essentially solving Problem 1 for
5-round Ascon with the monomial m being

∏14
i=0 vi. The source code is available

at: https://github.com/Mahe94/ascon_monomial_detection.git.
In Table 2, we provide more cubes which can serve as a distinguisher for

5-round Ascon-128. We start by randomly guessing a few cubes (i.e., a subset of
bit indices in X0

3 and X0
4 ) of size ` that is strictly smaller than 16, and set the

rest of the bits of the nonce (non-cube bits) to 0. For each u ∈ {0, 1}`, we set
the cube variables to u and run 5-round Ascon-128. The output X5

0 with respect
to each u is summed up to get the cube sum. We analyse the cube sum at X5

0

bits for 215 randomly generated keys and observe the following:

1. For all the 14 sized cubes, the sum at the output mentioned in Table 2 was
0 for every key.

2. For 13 sized cubes, the sum was 0 with high probability.

All indices mentioned in Table 2 have an offset of 0. Since, the 14 sized cubes are
giving 0 as the cube-sum for all 215 randomly chosen keys, we can use them as
a distinguisher for 5-round Ascon with very high confidence, owing a complexity
of 214 and beating the best known cube distinguisher [8], by a factor of 22.

References

1. Bürgisser, P.: Completeness and reduction in algebraic complexity theory, vol. 7.
Springer Science & Business Media (2000) 5

2. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: An-
nual international conference on the theory and applications of cryptographic tech-
niques. pp. 278–299. Springer (2009) 1

3. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: ASCON v1. 2. submission
to NIST (2019) (2020) 2

4. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for Three-Subset
Division Property without Unknown Subset. Journal of Cryptology 34(3), 1–69
(2021) 2

https://github.com/Mahe94/ascon_monomial_detection.git
https://link.springer.com/book/10.1007/978-3-662-04179-6
https://link.springer.com/chapter/10.1007/978-3-642-01001-9_16
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://link.springer.com/article/10.1007/s00145-021-09383-2
https://link.springer.com/article/10.1007/s00145-021-09383-2


Rounds Cube size Cube indices (X0
3 = X0

4 ) Output indices (X5
0 )

5 13

0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4

5 14

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 1, 4

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 16 4, 15, 24, 36

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 18 4

Table 2. List of cubes for 5-round Ascon-128

5. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums.
In: International Conference on the Theory and Application of Cryptology and
Information Security. pp. 446–476. Springer (2020) 2, 3

6. Kayal, N.: Algorithms for Arithmetic Circuits. In: Electron. Colloquium Comput.
Complex. vol. 17, p. 73 (2010) 2

7. Malod, G.: Polynômes et coefficients. Ph.D. thesis, Université Claude Bernard-
Lyon I (2003) 2, 5

8. Rohit, R., Hu, K., Sarkar, S., Sun, S.: Misuse-Free Key-Recovery and Distinguish-
ing Attacks on 7-Round Ascon. IACR Transactions on Symmetric Cryptology pp.
130–155 (2021) 3, 8, 9

9. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
7.6) (2017), https://www.sagemath.org 9

10. Todo, Y.: Structural evaluation by generalized integral property. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 287–314. Springer (2015) 2

https://eprint.iacr.org/2020/1048
https://eprint.iacr.org/2020/1048
https://eccc.weizmann.ac.il/report/2010/073/download/
https://tel.archives-ouvertes.fr/tel-00087399/
https://tosc.iacr.org/index.php/ToSC/article/view/8835
https://tosc.iacr.org/index.php/ToSC/article/view/8835
https://www.iacr.org/archive/eurocrypt2015/90560178/90560178.pdf

	On the hardness of monomial prediction and zero-sum distinguishers for Ascon

