On $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear generalized Hadamard codes^{*}

Dipak Kumar Bhunia, Cristina Fernández-Córdoba, and Mercè Villanueva

Department of Information and Communications Engineering Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès, Spain {Dipak.Bhunia,Cristina.Fernandez,Merce.Villanueva}@uab.cat

Abstract. The $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive codes are subgroups of $\mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2}$, and can be seen as linear codes over \mathbb{Z}_p when $\alpha_2 = 0$, \mathbb{Z}_{p^2} -additive codes when $\alpha_1 = 0$, or $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes when p = 2. A $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear generalized Hadamard (GH) code is a GH code over \mathbb{Z}_p which is the Gray map image of a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code. In this paper, we generalize some known results for $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes with p = 2 to any $p \ge 3$ prime when $\alpha_1 \ne 0$. First, we give a recursive construction of $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $t_1, t_2 \ge 1$. Then, we show for which types the corresponding $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes are non-linear over \mathbb{Z}_p . For these codes, we compute the kernel and its dimension, which allow us to give a complete classification of these codes.

Keywords: Hadamard code · Gray map · $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear code · kernel · classification

1 Introduction

Let \mathbb{Z}_p and \mathbb{Z}_{p^2} be the ring of integers modulo p and p^2 , respectively, where p is a prime. Let \mathbb{Z}_p^n and $\mathbb{Z}_{p^2}^n$ denote the set of all n-tuples over \mathbb{Z}_p and $\mathbb{Z}_{p^2}^n$, respectively. In this paper, the elements of \mathbb{Z}_p^n and $\mathbb{Z}_{p^2}^n$ will also be called vectors of length n. The order of a vector \mathbf{u} over \mathbb{Z}_{p^2} , denoted by $o(\mathbf{u})$, is the smallest positive integer m such that $m\mathbf{u} = \mathbf{0}$.

A code over \mathbb{Z}_p of length n is a nonempty subset of \mathbb{Z}_p^n , and it is linear if it is a subspace of \mathbb{Z}_p^n . Similarly, a nonempty subset of $\mathbb{Z}_{p^2}^n$ is a \mathbb{Z}_{p^2} -additive if it is a subgroup of $\mathbb{Z}_{p^2}^n$. A $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code is a subgroup of $\mathbb{Z}_{p^1}^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2}$. Note that a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code is a linear code over \mathbb{Z}_p when $\alpha_2 = 0$, a \mathbb{Z}_{p^2} -additive code when $\alpha_1 = 0$, or a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code when p = 2.

The Hamming weight of a vector $\mathbf{u} \in \mathbb{Z}_p^n$, denoted by $\operatorname{wt}_H(\mathbf{u})$, is the number of nonzero coordinates of \mathbf{u} . The Hamming distance of two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_p^n$, denoted by $d_H(\mathbf{u}, \mathbf{v})$, is the number of coordinates in which they differ. Note that $d_H(\mathbf{u}, \mathbf{v}) = \operatorname{wt}_H(\mathbf{v} - \mathbf{u})$. The minimum distance of a code C over \mathbb{Z}_p is $d(C) = \min\{d_H(\mathbf{u}, \mathbf{v}) : \mathbf{u}, \mathbf{v} \in C, \mathbf{u} \neq \mathbf{v}\}.$

^{*} This work has been partially supported by the Spanish MINECO under Grant PID2019-104664GB-I00 / AEI / 10.13039/501100011033 and by Catalan AGAUR scholarship 2020 FI SDUR 00475.

In [9], a Gray map from \mathbb{Z}_4 to \mathbb{Z}_2^2 is defined as $\phi(0) = (0,0), \ \phi(1) = (0,1),$ $\phi(2) = (1,1)$ and $\phi(3) = (1,0)$. There exist different generalizations of this Gray map, which go from \mathbb{Z}_{2^s} to $\mathbb{Z}_2^{2^{s-1}}$ [4,5,6,10,13]. The one given in [10] can be defined in terms of the elements of a Hadamard code [13], and Carlet's Gray map [5] is a particular case of the one given in [13] satisfying $\sum \lambda_i \phi(2^i) = \phi(\sum \lambda_i 2^i)$ [8]. In this paper, we focus on a generalization of Carlet's Gray map, from \mathbb{Z}_{p^s} to $\mathbb{Z}_{n}^{p^{s-1}}$, which is also a particular case of the one given in [17]. Specifically,

$$\phi: \mathbb{Z}_{p^2} \longrightarrow \mathbb{Z}_p^p \tag{1}$$

$$u \mapsto (u_0, u_1)M,\tag{2}$$

where $u \in \mathbb{Z}_{p^2}$; $[u_0, u_1]_p$ is the *p*-ary expansion of *u*, that is $u = u_0 + u_1 p$ with $u_0, u_1 \in \mathbb{Z}_p$; and M is the following matrix of size $2 \times p$:

$$\begin{pmatrix} 0 \ 1 \ 2 \ \cdots \ p-1 \\ 1 \ 1 \ 1 \ \cdots \ 1 \end{pmatrix}$$

Let $\Phi: \mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2} \to \mathbb{Z}_p^n$, where $n = \alpha_1 + p\alpha_2$, be an extension of the Gray map ϕ given by

$$\Phi(\mathbf{x} \mid \mathbf{y}) = (\mathbf{x} \mid \phi(y_1), \dots, \phi(y_{\alpha_2})),$$

for any $\mathbf{x} \in \mathbb{Z}_p^{\alpha_1}$ and $\mathbf{y} = (y_1, \dots, y_{\alpha_2}) \in \mathbb{Z}_{p^2}^{\alpha_2}$. Let \mathcal{C} be a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code over $\mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2}$. We say that its Gray map image $C = \Phi(\mathcal{C})$ is a $\mathbb{Z}_p \mathbb{Z}_{p^2}$ -linear code of length $\alpha_1 + p\alpha_2$. Since \mathcal{C} can be seen as a subgroup of $\mathbb{Z}_{p^2}^{\alpha_1 + \alpha_2}$, it is isomorphic to an abelian structure $\mathbb{Z}_{p^2}^{t_1} \times \mathbb{Z}_p^{t_2}$, and we say that \mathcal{C} , or equivalently $C = \Phi(\mathcal{C})$, is of type $(\alpha_1, \alpha_2; t_1, t_2)$. Note that $|\mathcal{C}| = p^{2t_1+t_2}$. Unlike linear codes over finite fields, linear codes over rings do not have a basis, but there exists a generator matrix for these codes having minimum number of rows, that is, $t_1 + t_2$ rows.

Two structural properties of codes over \mathbb{Z}_p are the rank and dimension of the kernel. The rank of a code C over \mathbb{Z}_p is simply the dimension of the linear span, $\langle C \rangle$, of C. The kernel of a code C over \mathbb{Z}_p is defined as $K(C) = \{ \mathbf{x} \in \mathbb{Z}_p^n : \mathbf{x} + C = \}$ C [2,14]. If the all-zero vector belongs to C, then K(C) is a linear subcode of C. Note also that if C is linear, then $K(C) = C = \langle C \rangle$. We denote the rank of C as $\operatorname{rank}(C)$ and the dimension of the kernel as $\ker(C)$. These parameters can be used to distinguish between non-equivalent codes, since equivalent ones have the same rank and dimension of the kernel.

A generalized Hadamard (GH) matrix $H(p, \lambda) = (h_{ij})$ of order $n = p\lambda$ over \mathbb{Z}_p is a $p\lambda \times p\lambda$ matrix with entries from \mathbb{Z}_p with the property that for every i, j, $1 \leq i < j \leq p\lambda$, each of the multisets $\{h_{is} - h_{js} : 1 \leq s \leq p\lambda\}$ contains every element of \mathbb{Z}_p exactly λ times [11]. An ordinary Hadamard matrix of order 4μ corresponds to GH matrix $H(2, \lambda)$ over \mathbb{Z}_2 , where $\lambda = 2\mu$ [1]. Two GH matrices H_1 and H_2 of order n are said to be equivalent if one can be obtained from the other by a permutation of the rows and columns and adding the same element of \mathbb{Z}_p to all the coordinates in a row or in a column.

We can always change the first row and column of a GH matrix into zeros and we obtain an equivalent GH matrix which is called normalized. From a normalized GH matrix H, we denote by F_H the code consisting of the rows of H, and $C_H = \bigcup_{\alpha \in \mathbb{Z}_p} (F_H + \alpha \mathbf{1})$, where $F_H + \alpha \mathbf{1} = {\mathbf{h} + \alpha \mathbf{1} : \mathbf{h} \in F_H}$ and $\mathbf{1}$ denotes the all-one vector. The code C_H over \mathbb{Z}_p is called generalized Hadamard (GH) code [7]. Note that C_H is generally a non-linear code over \mathbb{Z}_p . Moreover, if it is of length N, it has pN codewords and minimum distance N(p-1)/p.

The $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive codes such that after the Gray map Φ give GH codes are called $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes and the corresponding images are called $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes. It is known that $\mathbb{Z}_2\mathbb{Z}_4$ -linear GH codes with $\alpha_1 = 0$ and $\alpha_1 \neq 0$ can be classified by using either the rank or the dimension of the kernel [12,15]. For $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes with $\alpha_1 = 0$ and $p \geq 3$ prime, it is also known that the kernel can be used to give a complete classification [3].

This paper is focused on $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes with $\alpha_1 \neq 0$ and $p \geq 3$ prime, generalizing some results given for p = 2 in [15,16] related to the construction, linearity, kernel and classification of such codes. This paper is organized as follows. In Section 2, we describe the construction of $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $\alpha_1 \neq 0$. In Sections 3 and 4, we establish for which types these codes are linear, and we give the kernel and its dimension whenever they are non-linear. We also show that the dimension of the kernel is enough to classify completely the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes with $\alpha_1 \neq 0$ of a given length, providing the number of non-equivalent such codes, like it was proved for $\mathbb{Z}_2\mathbb{Z}_4$ linear GH codes in [15].

2 Construction of $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes

The description of a generator matrix having minimum number of rows for $\mathbb{Z}_2\mathbb{Z}_4$ additive GH codes with $\alpha_1 \neq 0$, as long as an iterative construction of these matrices, are given in [15,16]. In this section, we generalize these results for $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes with $\alpha_1 \neq 0$ and any $p \geq 3$ prime. Specifically, we define an iterative construction for the generator matrices and establish that they generate $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes.

Let $0, 1, 2, ..., p^2 - 1$ be the vectors having the elements $0, 1, 2, ..., p^2 - 1$ repeated in each coordinate, respectively. Let

$$A_p^{1,1} = \begin{pmatrix} 1 \ 1 \ \cdots \ 1 \\ 0 \ 1 \ \cdots \ p - 1 \\ 1 \ 2 \ \cdots \ p - 1 \end{pmatrix}.$$
(3)

Any matrix $A_p^{t_1,t_2}$ with $t_1 \geq 1, t_2 \geq 2$ or $t_1 \geq 2, t_2 \geq 1$ can be obtained by applying the following iterative construction. First, if A is a generator matrix of a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code, that is, a subgroup of $\mathbb{Z}_p^{\alpha_1} \times \mathbb{Z}_{p^2}^{\alpha_2}$, then we denote by A_1 the submatrix of A with the first α_1 columns over \mathbb{Z}_p , and A_2 the submatrix with the last α_2 columns over \mathbb{Z}_{p^2} . We start with $A_p^{1,1}$. Then, if we have a matrix $A = A_p^{t_1,t_2}$, we may construct the matrices

$$A_p^{t_1,t_2+1} = \begin{pmatrix} A_1 \ A_1 \ \cdots \ A_1 \\ \mathbf{0} \ \mathbf{1} \ \cdots \ \mathbf{p} - \mathbf{1} \middle| p \cdot \mathbf{0} \ p \cdot \mathbf{1} \ \cdots \ p \cdot (\mathbf{p} - \mathbf{1}) \end{pmatrix}$$
(4)

$$A_{p}^{t_{1}+1,t_{2}} = \begin{pmatrix} A_{1} \ A_{1} \ \cdots \ A_{1} \\ \mathbf{0} \ \mathbf{1} \ \cdots \ \mathbf{p} - \mathbf{1} \\ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \cdots \ \mathbf{p} - \mathbf{1} \\ \mathbf{0} \ \mathbf{1} \ \cdots \ \mathbf{p} - \mathbf{1} \end{pmatrix} \begin{pmatrix} pA_{1} \ \cdots \ pA_{1} \ A_{2} \ A_{2} \ \cdots \ A_{2} \\ \mathbf{1} \ \cdots \ \mathbf{p} - \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \cdots \ \mathbf{p}^{2} - \mathbf{1} \end{pmatrix}.$$
(5)

Example 1. Let

$$A_3^{1,1} = \begin{pmatrix} 1 \ 1 \ 1 \ 1 & 3 \\ 0 \ 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$

be the matrix described in (3) for p = 3. By using the constructions described in (4) and (5), we obtain $A_3^{1,2}$ and $A_3^{2,1}$, respectively, as follows:

Throughout this paper, we consider that the matrices $A_p^{t_1,t_2}$ are constructed

recursively starting from $A_p^{1,1}$ in the following way. First, we add $t_1 - 1$ rows of order p^2 , up to obtain $A_p^{t_1,1}$; and then t_2 rows of order p up to achieve $A_p^{t_1,t_2}$. The $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code generated by $A_p^{t_1,t_2}$ is denoted by $\mathcal{H}_p^{t_1,t_2}$, and the corresponding $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear code $\Phi(\mathcal{H}_p^{t_1,t_2})$ by $H_p^{t_1,t_2}$. We also write A^{t_1,t_2} , \mathcal{H}^{t_1,t_2} , and H^{t_1,t_2} instead of $A_p^{t_1,t_2}$, $\mathcal{H}_p^{t_1,t_2}$, and $H_p^{t_1,t_2}$, respectively, when the value of pis clear by the context.

Theorem 1. The $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive code $\mathcal{H}_p^{1,1}$ generated by the matrix

$$A_p^{1,1} = \begin{pmatrix} 1 \ 1 \ \cdots \ 1 \\ 0 \ 1 \ \cdots \ p-1 \\ 1 \ 2 \ \cdots \ p-1 \end{pmatrix}$$

is a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH code of type (p, p-1; 1, 1).

Example 2. The $\mathbb{Z}_3\mathbb{Z}_9$ -additive code $\mathcal{H}_3^{1,1}$ generated by the matrix $A_3^{1,1}$, given in Example 1, is a $\mathbb{Z}_3\mathbb{Z}_9$ -additive GH code of type (3, 2; 1, 1). Indeed, we have that $H_3^{1,1} = \Phi(\mathcal{H}_3^{1,1}) = \bigcup_{\lambda \in \mathbb{Z}_3} (\Phi(A_0) + \lambda \mathbf{1})$, where $A_0 = \{\lambda(0, 1, 2 \mid 1, 2) : \lambda \in \mathbb{Z}_9\}$, and then $\Phi(A_0)$ consists of all the rows of the GH matrix

The $\mathbb{Z}_3\mathbb{Z}_9$ -linear code $H_3^{1,1}$ has length N = 9, $pN = 3 \cdot 9 = 27$ codewords and minimum distance N(p-1)/p = 9(3-1)/3 = 6.

and

Theorem 2. Let $\mathcal{H}_p^{t_1,t_2}$ be a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH code of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $t_1, t_2 \geq 1$ and p prime. Then, with the above constructions, $\mathcal{H}_p^{t_1,t_2+1}$ and $\mathcal{H}_p^{t_1+1,t_2}$ are $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH codes of types $(p\alpha_1, p\alpha_2; t_1, t_2 + 1)$ and $(p\alpha_1, (p-1)\alpha_1 + p^2\alpha_2; t_1 + 1, t_2)$, respectively.

Example 3. Let $\mathcal{H}_3^{1,2}$ be the $\mathbb{Z}_3\mathbb{Z}_9$ -additive code generated by the matrix $A_3^{1,2}$ given in Example 1. By Theorem 2, $H_3^{1,2} = \Phi(\mathcal{H}_3^{1,2})$ is a $\mathbb{Z}_3\mathbb{Z}_9$ -linear GH code of type (9,6;1,2). Actually, we can write $H_3^{1,2} = \bigcup_{\lambda \in \mathbb{Z}_3} (F_H + \lambda \mathbf{1})$, where F_H consists of all the rows of a GH matrix H(3,9). Also, note that $H_3^{1,2}$ has length N = 27, $pN = 3 \cdot 27 = 81$ codewords and minimum distance N(p-1)/p = 27(3-1)/3 = 18.

Remark 1. The above constructions (4) and (5) give always $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes with $\alpha_2 \neq 0$ since the starting matrix $A_p^{1,1}$ has $\alpha_2 \neq 0$. If $\alpha_2 = 0$, the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes coincide with the codes obtained from a Sylvester GH matrix, so they are always linear and of type $(p^{t_2-1}, 0; 0, t_2)$ [7]. Therefore, we only focus on the ones with $\alpha_2 \neq 0$ to study whether they are linear or not.

Remark 2. Let $\mathcal{H} = \mathcal{H}_p^{t_1, t_2}$ be a $\mathbb{Z}_p \mathbb{Z}_{p^2}$ -additive GH code of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $t_1, t_2 \geq 1$ and p prime. Let $H = \varPhi(\mathcal{H}_p^{t_1, t_2})$ be the corresponding $\mathbb{Z}_p \mathbb{Z}_{p^2}$ linear GH code of length $\alpha_1 + p\alpha_2$. Then, since H is a GH code, its minimum distance is

$$\frac{(p-1)(\alpha_1 + p\alpha_2)}{p}$$

Let \mathcal{H}_1 (respectively, \mathcal{H}_2) be the punctured code of \mathcal{H} by deleting the last α_2 coordinates over \mathbb{Z}_{p^2} (respectively, the first α_1 coordinates over \mathbb{Z}_p). Note that, by construction, \mathcal{H}_1 is a GH code over \mathbb{Z}_p of length α_1 and minimum distance $(p-1)\alpha_1/p$. Therefore, $H_2 = \Phi(\mathcal{H}_2)$ has minimum distance $(p-1)\alpha_2$.

Remark 3. Since the length of the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH code $\Phi(\mathcal{H}_p^{1,1})$ is p^2 , its minimum distance is $(p-1)p^2/p = p(p-1)$ by Remark 2.

3 Linearity of $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes

In [15], it is shown that the $\mathbb{Z}_2\mathbb{Z}_4$ -linear GH codes of type $(\alpha_1, \alpha_2; 1, t_2)$ are the only ones which are linear, when $\alpha_1 \neq 0$ and $\alpha_2 \neq 0$. The next result shows that there are no $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes of type $(\alpha_1, \alpha_2; t_1, t_2)$, with $\alpha_1 \neq 0$, $t_1, t_2 \geq 1$ and $p \geq 3$ prime, which are linear. Note that this result for $p \geq 3$ does not coincide with the known result for p = 2 if $t_1 = 1$.

Theorem 3. Let $\mathcal{H}_p^{t_1,t_2}$ be the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH code of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $\alpha_1 \neq 0, t_1, t_2 \geq 1$ and $p \geq 3$ prime. Then, $\mathcal{H}_p^{t_1,t_2} = \Phi(\mathcal{H}_p^{t_1,t_2})$ is non-linear.

 $\begin{array}{l} \textit{Proof. First, we prove that } H_p^{1,1} \text{ is non-linear. Since } \mathbf{u} = (0,1,\ldots,p-1 \mid 1,2,\ldots,p-1) \in \mathcal{H}_p^{1,1}, \text{ then } (p-1)\mathbf{u} = (0,(p-1)\cdot 1,\ldots,(p-1)\cdot (p-1) \mid (p-1)\cdot 1,(p-1)\cdot 2,\ldots,(p-1)\cdot (p-1)) \in \mathcal{H}_p^{1,1}. \text{ Since } \phi(1) + \phi(p-1) = 0, \text{ then } \end{array}$

the first 2p coordinates of the vector $\Phi(\mathbf{u}) + \Phi((p-1)\mathbf{u})$ of length p^2 are zero. Therefore, $\operatorname{wt}_H(\Phi(\mathbf{u}) + \Phi((p-1)\mathbf{u})) \leq p^2 - 2p = p(p-2) < p(p-1)$, and hence, $\Phi(\mathbf{u}) + \Phi((p-1)\mathbf{u}) \notin H_p^{1,1}$, since the minimum distance of $H_p^{1,1}$ is p(p-1) by Remark 3. Therefore, $H_p^{1,1}$ is non-linear. Second, we prove that if $H_p^{t_1-1,t_2}$ is non-linear, then $H_p^{t_1,t_2}$ is also non-linear.

Second, we prove that if $H_p^{t_1-1,t_2}$ is non-linear, then $H_p^{t_1,t_2}$ is also non-linear. Assume that $H_p^{t_1,t_2}$ is linear. Then, by the iterative construction defined in (5), for any $\mathbf{u} = (u \mid u')$, $\mathbf{v} = (v \mid v') \in \mathcal{H}_p^{t_1-1,t_2}$, we have that $\bar{\mathbf{u}}, \bar{\mathbf{v}} \in \mathcal{H}_p^{t_1,t_2}$, where

$$\bar{\mathbf{u}} = (u, .^{p}, u \mid pu, \stackrel{p-1}{\dots}, pu, u', \stackrel{p^{2}}{\dots}, u')$$

$$\bar{\mathbf{v}} = (v, .^{p}, v \mid pv, \stackrel{p-1}{\dots}, pv, v', \stackrel{p^{2}}{\dots}, v').$$

Moreover, since $H_p^{t_1,t_2}$ is linear, $\Phi(\bar{\mathbf{u}}) + \Phi(\bar{\mathbf{v}}) = \Phi((a, .^p, .a \mid pa, \overset{p-1}{p}, pa, a', \overset{p}{p}, .a') + \lambda(\mathbf{0}, \mathbf{1}, \dots, \mathbf{p-1} \mid \mathbf{1}, \mathbf{2}, \dots, \mathbf{p-1}, \mathbf{0}, \mathbf{1}, \dots, \mathbf{p^2-1})) \in H_p^{t_1,t_2}$, for some $\mathbf{a} = (a \mid a') \in \mathcal{H}_p^{t_1-1,t_2}$ and $\lambda \in \mathbb{Z}_{p^2}$. Considering the coordinates in positions 1 and 2p of $\bar{\mathbf{u}}$ and $\bar{\mathbf{v}}$, we have that $\Phi(\mathbf{u}) + \Phi(\mathbf{v}) = \Phi(\mathbf{a}) \in H_p^{t_1-1,t_2}$, and then $H_p^{t_1-1,t_2}$ is linear, which is a contradiction.

^{*p*} Finally, if $H_p^{t_1,t_2-1}$ is non-linear, then as above we can show that $H_p^{t_1,t_2}$ is also non-linear, and hence the result follows.

Example 4. Let $\mathcal{H}_3^{1,1}$ be the $\mathbb{Z}_3\mathbb{Z}_9$ -additive GH code of type (3,2;1,1) considered in Example 2. Note that $(0,1,2,0,1,2,0,2,1) + (0,2,1,0,2,1,1,2,0) = (0,0,0,0,0,0,1,1,1) \notin \Phi(\mathcal{H}_3^{1,1})$, so $\mathcal{H}_3^{1,1} = \Phi(\mathcal{H}_3^{1,1})$ is a non-linear code.

4 Kernel and classification of $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes

The kernel of $\mathbb{Z}_2\mathbb{Z}_4$ -linear Hadamard codes with $\alpha_1 \neq 0$ and its dimension are given in [15]. In this section, we generalize these results for $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes with $\alpha_1 \neq 0$ and $p \geq 3$ prime. First, we found the kernel for these codes, and then we establish a basis of the kernel, which give us its dimension. Specifically, the dimension of the kernel of a $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH code of type $(\alpha_1, \alpha_2; t_1, t_2)$, with $\alpha_1 \neq 0, t_1, t_2 \geq 1$ and $p \geq 3$ prime, is $t_1 + t_2$. Again, note that this result for $p \geq 3$ does not coincide with the known result for p = 2 if $t_1 = 1$.

Theorem 4. Let $\mathcal{H} = \mathcal{H}_p^{t_1,t_2}$ be the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH code of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $\alpha_1 \neq 0, t_1, t_2 \geq 1$ and $p \geq 3$ prime. Let \mathcal{H}_p be the subcode of \mathcal{H} which contains all the codewords of order p. Then, $K(\Phi(\mathcal{H})) = \Phi(\mathcal{H}_p)$.

Corollary 1. Let $\mathcal{H} = \mathcal{H}_p^{t_1,t_2}$ be the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH code of type $(\alpha_1, \alpha_2; t_1, t_2)$ with $\alpha_1 \neq 0, t_1, t_2 \geq 1$ and $p \geq 3$ prime. Let \mathbf{w}_k be the kth row of A^{t_1,t_2} and $Q = \{(o(\mathbf{w}_k)/p)\mathbf{w}_k\}_{k=1}^{t_1+t_2}$. Then, $\Phi(Q)$ is a basis of $K(\Phi(\mathcal{H}))$ and $ker(\Phi(\mathcal{H})) = t_1 + t_2$.

Example 5. Let $\mathcal{H}_3^{1,2}$ be the $\mathbb{Z}_3\mathbb{Z}_9$ -additive GH code generated by $A_3^{1,2}$ given in Example 1. By Corollary 1, we have that $\ker(H_3^{1,2}) = 1 + 2 = 3$. Also by Corollary 1, we can construct $K(H_3^{1,2})$ from a basis. We have that $Q = \{(\mathbf{1} \mid \mathbf{3}), (\mathbf{0} \mid 3, 6, 3, 6, 3, 6), (\mathbf{0} \mid 0, 0, 3, 3, 6, 6)\}$. Thus,

$$K(H_3^{1,2}) = \langle \Phi(\mathbf{1} \mid \mathbf{3}), \Phi(\mathbf{0} \mid 3, 6, 3, 6, 3, 6), \Phi(\mathbf{0} \mid 0, 0, 3, 3, 6, 6) \rangle$$

More generally, if $\mathcal{H}_p^{1,2}$ is the $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -additive GH code generated by $A_p^{1,2}$ with $p \geq 3$ prime, then we have that

$$K(H_p^{1,2}) = \langle \Phi(\mathbf{1} \mid \mathbf{p}), \Phi(\mathbf{0} \mid \mathbf{u}), \Phi(\mathbf{0} \mid \mathbf{v}) \rangle$$

where **u** is the *p*-fold replication of $(p, 2p, \ldots, (p-1)p)$ and $\mathbf{v} = (\mathbf{0}, p \cdot \mathbf{1}, \ldots, p \cdot (\mathbf{p-1}))$ with $\mathbf{i} = (i, \overset{p-1}{\ldots}, i), i \in \{0, 1, \ldots, p-1)\}$. Therefore, $\ker(H_p^{1,2}) = 3$. Note that $\ker(H_2^{1,2}) = 4$, since $H_2^{1,2}$ is linear [15].

Corollary 2. For any $t \ge 2$ and $p \ge 3$ prime, there are at least $\lfloor t/2 \rfloor + 1$ non-equivalent $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes of length p^t .

Proof. Considering all the non-negative integer solutions (t_1, t_2) with $t_1, t_2 \ge 1$ of the equation $t + 1 = 2t_1 + t_2$, we have that all the non-linear $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes of length p^t are $H_p^{t_1,t-2t_1+1}$, where $1 \le t_1 \le \lfloor t/2 \rfloor$, by Theorem 3. Then, by Corollary 1, the dimensions of the kernels of the these codes are $t - t_1 + 1$, which gives different values for distinct values of t_1 . Therefore, they are all non-equivalent codes. We have at least one $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH code of type $(p^t, 0; 0, t + 1)$, which is linear. Therefore, there are at least $\lfloor t/2 \rfloor + 1$ nonequivalent $\mathbb{Z}_p\mathbb{Z}_{p^2}$ -linear GH codes of length p^t .

References

- 1. Assmus, E.F., Key, J.D.: Designs and Their Codes. Cambridge University Press (1994)
- Bauer, H., Ganter, B., Hergert, F.: Algebraic techniques for nonlinear codes. Combinatorica 3(1), 21–33 (1983)
- Bhunia, D.K., Fernández-Córdoba, C., Villanueva, M.: On the linearity and classification of Z_{p^s}-linear generalized Hadamard codes. submitted to Designs, Codes and Cryptography (2021)
- Borges, J., Fernández-Córdoba, C., Rifà, J.: Every Z_{2k}-code is a binary propelinear code. Electronic Notes in Discrete Mathematics 10, 100–102 (2001)
- 5. Carlet, C.: \mathbb{Z}_{2^k} -linear codes. IEEE Transactions on Information Theory **44**(4), 1543–1547 (1998)
- Dougherty, S.T., Fernández-Córdoba, C.: Codes over Z_{2^k}, Gray map and self-dual codes. Advances in Mathematics of Communications 5(4), 571–588 (2011)
- Dougherty, S.T., Rifà, J., Villanueva, M.: Ranks and kernels of codes from generalized Hadamard matrices. IEEE Transactions on Information Theory 62(2), 687–694 (2016)
- Fernández-Córdoba, C., Vela, C., Villanueva, M.: On Z₂s-linear Hadamard codes: kernel and partial classification. Designs, Codes and Cryptography 87(2-3), 417– 435 (2019)
- Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J., Solé, P.: The Z₄linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory 40(2), 301–319 (1994)
- Honold, T., Nechaev, A.A.: Weighted modules and representations of codes. Probl. Inf. Transm. 35(3), 205–223 (1999)
- Jungnickel, D.: On difference matrices, resolvable transversal designs and generalized Hadamard matrices. Mathematische Zeitschrift 167(1), 49–60 (1979)

- Krotov, D.S.: Z₄-linear Hadamard and extended perfect codes. Electronic Notes in Discrete Mathematics 6, 107–112 (2001)
- Krotov, D.S.: On Z_{2k}-dual binary codes. IEEE Transactions on Information Theory 53(4), 1532–1537 (2007)
- Phelps, K.T., Rifà, J., Villanueva, M.: Kernels and p-kernels of p^r-ary 1-perfect codes. Designs, Codes and Cryptography 37(2), 243–261 (2005)
- Phelps, K.T., Rifà, J., Villanueva, M.: On the additive (Z₄-linear and non-Z₄-linear) Hadamard codes: rank and kernel. IEEE transactions on information theory 52(1), 316–319 (2006)
- Rifà, J., Solov'eva, F.I., Villanueva, M.: On the intersection of Z₂Z₄-additive perfect codes. IEEE transactions on information theory 54(3), 1346–1356 (2008)
- 17. Shi, M., Wu, R., Krotov, D.S.: On $\mathbb{Z}_p\mathbb{Z}_{p^k}$ -additive codes and their duality. IEEE Transactions on Information Theory **65**(6), 3841–3847 (2019)