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Abstract. The Z,Z,2-additive codes are subgroups of Zy* x Zp2 , and
can be seen as linear codes over Z, when a2 = 0, sz-additive codes when
a1 = 0, or ZsZs-additive codes when p = 2. A Zprz—linear generalized
Hadamard (GH) code is a GH code over Z, which is the Gray map image
of a ZyZ,2-additive code. In this paper, we generalize some known results
for Z,Z,2-linear GH codes with p = 2 to any p > 3 prime when a1 # 0.
First, we give a recursive construction of Z,Z,2-additive GH codes of
type (au, a2;ti,t2) with t1,t2 > 1. Then, we show for which types the
corresponding Z,Z,,2-linear GH codes are non-linear over Z,. For these
codes, we compute the kernel and its dimension, which allow us to give
a complete classification of these codes.

Keywords: Hadamard code - Gray map - ZpZ,2-linear code - kernel -
classification

1 Introduction

Let Z, and Z,> be the ring of integers modulo p and p?, respectively, where
p is a prime. Let Z; and ZZZ denote the set of all n-tuples over Z, and Z,,
respectively. In this paper, the elements of Z; and Z;’z will also be called vectors
of length n. The order of a vector u over Z,2, denoted by o(u), is the smallest
positive integer m such that mu = 0.

A code over Zj, of length n is a nonempty subset of Zj, and it is linear if it
is a subspace of Z;. Similarly, a nonempty subset of Ly, is a Zyz2-additive if it
is a subgroup of ZZQ. A Z,Zy2-additive code is a subgroup of Zj x 7°2. Note
that a Z,Z,2-additive code is a linear code over Z, when ay = 0, a Z,2-additive
code when a; = 0, or a ZyZ4-additive code when p = 2.

The Hamming weight of a vector u € Zj, denoted by wty (u), is the number
of nonzero coordinates of u. The Hamming distance of two vectors u,v € Zjy,
denoted by dg(u,v), is the number of coordinates in which they differ. Note
that dg(u,v) = wty(v — u). The minimum distance of a code C over Z, is
d(C) = min{dg(u,v) :u,v € C,u # v}.
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In [9], a Gray map from Z4 to Z3 is defined as ¢(0) = (0,0), ¢(1) = (0,1),
#(2) = (1,1) and ¢(3) = (1,0). There exist different generalizations of this
Gray map, which go from Zss to Z%kl [4,5,6,10,13]. The one given in [10] can be
defined in terms of the elements of a Hadamard code [13], and Carlet’s Gray map
[5] is a particular case of the one given in [13] satisfying > X\;$(2%) = ¢(3- A\;27)
[8]. In this paper, we focus on a generalization of Carlet’s Gray map, from Z,-
to ng_l, which is also a particular case of the one given in [17]. Specifically,

6 Lye — IE (1)
u > (ug, ur) M, (2)

where u € Z,2; [ug,u1], is the p-ary expansion of u, that is u = ug + u1p with
Uo, U1 € Zyp; and M is the following matrix of size 2 x p:

012 p—1
111--- 1 )°

Let & : Z;* x ZZ‘;" — Zy, where n = oy + paz, be an extension of the Gray map
¢ given by

P(x|y) = (x[¢), - ¢(Yaz)),
for any x € Zy* and y = (Y1,---,Ya,) € sz.

Let C be a Z,Z2-additive code over Z;* x Zg‘ﬁ. We say that its Gray map
image C = @(C) is a ZpZ,2-linear code of length a; + pas. Since C can be seen
as a subgroup of Z;%Jraz, it is isomorphic to an abelian structure Z;lz X Z;f, and
we say that C, or equivalently C' = &(C), is of type (a1, as;t1,t2). Note that
|C| = p?**+t2_ Unlike linear codes over finite fields, linear codes over rings do not
have a basis, but there exists a generator matrix for these codes having minimum
number of rows, that is, t; + to rows.

Two structural properties of codes over Z, are the rank and dimension of the
kernel. The rank of a code C over Z,, is simply the dimension of the linear span,
(C), of C. The kernel of a code C' over Z,, is defined as K(C) = {x € Zy; : x+C =
C} [2,14]. If the all-zero vector belongs to C, then K(C) is a linear subcode of
C. Note also that if C is linear, then K(C) = C = (C). We denote the rank of
C as rank(C) and the dimension of the kernel as ker(C'). These parameters can
be used to distinguish between non-equivalent codes, since equivalent ones have
the same rank and dimension of the kernel.

A generalized Hadamard (GH) matrix H(p, \) = (hs;) of order n = pX over
Zy, is a pA X pA matrix with entries from Z, with the property that for every 1, j,
1 <4 < j < pA, each of the multisets {h;s — hjs : 1 < s < pA} contains every
element of Z, exactly A times [11]. An ordinary Hadamard matrix of order 4u
corresponds to GH matrix H(2, A) over Zy, where A = 2 [1]. Two GH matrices
Hy and Hs of order n are said to be equivalent if one can be obtained from the
other by a permutation of the rows and columns and adding the same element
of Z,, to all the coordinates in a row or in a column.

We can always change the first row and column of a GH matrix into zeros
and we obtain an equivalent GH matrix which is called normalized. From a



normalized GH matrix H, we denote by Fy the code consisting of the rows of
H,and Cy = UanP(FH + al), where Fy+al ={h+al:he€ Fg} and 1
denotes the all-one vector. The code C'y over Z, is called generalized Hadamard
(GH) code [7]. Note that C is generally a non-linear code over Z,. Moreover,
if it is of length N, it has pN codewords and minimum distance N(p — 1)/p.

The Z,Z,2-additive codes such that after the Gray map ¢ give GH codes are
called Z,Z,>-additive GH codes and the corresponding images are called Z,Z,-
linear GH codes. It is known that ZyZ,4-linear GH codes with a; = 0 and a1 # 0
can be classified by using either the rank or the dimension of the kernel [12,15].
For Z,Z,>-additive GH codes with a; = 0 and p > 3 prime, it is also known
that the kernel can be used to give a complete classification [3].

This paper is focused on Zj,Z>-linear GH codes with a1 # 0 and p > 3 prime,
generalizing some results given for p = 2 in [15,16] related to the construction,
linearity, kernel and classification of such codes. This paper is organized as fol-
lows. In Section 2, we describe the construction of Z,Z,.-linear GH codes of
type (a1, as9;ty,t2) with ay # 0. In Sections 3 and 4, we establish for which
types these codes are linear, and we give the kernel and its dimension whenever
they are non-linear. We also show that the dimension of the kernel is enough to
classify completely the Z,Zy2-linear GH codes with a; # 0 of a given length,
providing the number of non-equivalent such codes, like it was proved for ZoZ4-
linear GH codes in [15].

2 Construction of Z,Z,2-additive GH codes

The description of a generator matrix having minimum number of rows for ZoZ4-
additive GH codes with a1 # 0, as long as an iterative construction of these
matrices, are given in [15,16]. In this section, we generalize these results for
ZipZy2-additive GH codes with oy # 0 and any p > 3 prime. Specifically, we
define an iterative construction for the generator matrices and establish that
they generate Z,Z,2-additive GH codes.

Let 0,1,2,...,p% — 1 be the vectors having the elements 0,1,2,...,p> — 1
repeated in each coordinate, respectively. Let

11--- 1
1,1 _ pp p
A, _<01...p112...p1>' 3)
Any matrix A;ht? with ¢; > 1,t5 > 2 or t; > 2,t; > 1 can be obtained by
applying the following iterative construction. First, if A is a generator matrix
of a Z,Zy2-additive code, that is, a subgroup of Zg* x Z 3, then we denote by
A1 the submatrix of A with the first o; columns over Z,,, and Ay the submatrix
with the last cp columns over Z,>. We start with A}j’l. Then, if we have a matrix
A= Alv*2 we may construct the matrices

gttt _ (Ar A Ap ( Ay Ay e Ay (@)

P 01 ---p—1p-0p-1---p-(p—1)



and

O o

01 ---p-1

i (11133
A "(01212)
be the matrix described in (3) for p = 3. By using the constructions described
in (4) and (5), we obtain Ay* and A3, respectively, as follows:

pAy -+ pA1 As Ay - A
1 ---p—-101-.---p*—-1)"

Ezxzample 1. Let

111111111[333333
Ay =1012012012(121212
000111222/003366

111111111
Ay'=(012012012

000111222

0360361212---12
1112220011--- 88

3333333333~~-33>

Throughout this paper, we consider that the matrices A;,l*tz are constructed
recursively starting from AL! in the following way. First, we add ¢; — 1 rows of
order p?, up to obtain A%'; and then ¢ rows of order p up to achieve AL-*>.

The 7Z,Z2-additive code generated by A!''*2 is denoted by H!'*2, and the
corresponding Z,Zy>-linear code ¢(H.*2) by H}-*2. We also write A™-'2, H!t2,
and H"* instead of Aj1:*2, H1-*2 and H/*?, respectively, when the value of p
is clear by the context.

Theorem 1. The Z,Z,>-additive code 'Hé’l generated by the matriz

A171: 11... 1 pp--- P
P 01---p—1{12---p—1

is 0 LpLy2 -additive GH code of type (p,p —1;1,1).

Ezxample 2. The Z3Zg-additive code 7—[%71 generated by the matrix Aé’17 given in
Example 1, is a Z3Zg-additive GH code of type (3,2;1,1). Indeed, we have that
Hy' = &(Hy') = Uyer, (P(Ao) + A1), where Ag = {A(0,1,2 | 1,2) : X € Zg},
and then @(Ay) consists of all the rows of the GH matrix

000000000
012012021
021021120
000111222
H(3,3)=|012120210 |. (6)
021102012
000222111
012201102
021210201

The ZgZg-linear code H?}’l has length N =9, pN = 3 -9 = 27 codewords and
minimum distance N(p —1)/p =9(3—-1)/3 = 6.



Theorem 2. Let H!* be a ZyZ,-additive GH code of type (a1, aa;ty, ta) with
t1,t2 > 1 and p prime. Then, with the above constructions, ’H;l’t2+1 and H;)ﬁl’t?
are LpZy2-additive GH codes of types (pai, pag;ty,ta +1) and (po, (p —1)aq +
p?ag;ty + 1,ta), respectively.

Ezxample 3. Let 7—[:1;72 be the ZsZgy-additive code generated by the matrix Aé’Q
given in Example 1. By Theorem 2, H§’2 = @(’Hé’z) is a ZgZg-linear GH code
of type (9,6;1,2). Actually, we can write H§’2 = Uiez, (Fr + A1), where Fy
consists of all the rows of a GH matrix H(3,9). Also, note that H§’2 has length
N = 27, pN = 327 = 81 codewords and minimum distance N(p — 1)/p =
27(3-1)/3 =18.

Remark 1. The above constructions (4) and (5) give always Z,Z,2-linear GH
codes with as # 0 since the starting matrix AZI;1 has as # 0. If ag = 0, the
ZipZ2-linear GH codes coincide with the codes obtained from a Sylvester GH
matrix, so they are always linear and of type (p'2~1,0;0,t3) [7]. Therefore, we
only focus on the ones with ay # 0 to study whether they are linear or not.

Remark 2. Let H = H!-" be a Z,Z,-additive GH code of type (o, ag;ty,to)
with t1,t2 > 1 and p prime. Let H = @(’H;l*t?) be the corresponding Z,Z2-
linear GH code of length a1 + pay. Then, since H is a GH code, its minimum
distance is

(p —1)(oa + paz)

) .

Let #H; (respectively, Ha) be the punctured code of H by deleting the last aw
coordinates over Z,> (respectively, the first o; coordinates over Z,). Note that,
by construction, H; is a GH code over Z, of length a; and minimum distance
(p — 1)a1/p. Therefore, Hy = $(H2) has minimum distance (p — 1)as.

Remark 3. Since the length of the Z,Z,.-linear GH code @(7—[;71) is p?, its min-
imum distance is (p — 1)p?/p = p(p — 1) by Remark 2.

3 Linearity of Z,Zp:-linear GH codes

In [15], it is shown that the ZyZ4-linear GH codes of type (aq, ae; 1,t2) are the
only ones which are linear, when a3 # 0 and ag # 0. The next result shows
that there are no Z,Z,:-linear GH codes of type (ai,az;ti,t2), with oy # 0,
t1,to > 1 and p > 3 prime, which are linear. Note that this result for p > 3 does
not coincide with the known result for p =2 if ¢t; = 1.

Theorem 3. Let H" be the Z,Z,-additive GH code of type (o, aa;t,ts)
with an # 0, t1,ta > 1 and p > 3 prime. Then, H' = &(HL*2) is non-linear.

Proof. First, we prove that H;’l is non-linear. Since u = (0,1,...,p — 1 |
L2,...,p—1) € H}!, then (p — L)u = (0,(p—1)-1,...,(p—1)- (p—1) |
(p—1)-1,(p—1)-2,...,(p—1)-(p—1)) € Hy'. Since ¢(1) + ¢(p — 1) = 0, then



the first 2p coordinates of the vector &(u) + @((p — 1)u) of length p? are zero.
Therefore, wt g (®(u) +P((p—1)u)) < p? —2p = p(p—2) < p(p— 1), and hence,
®(u) + d((p — 1)u) ¢ H}*', since the minimum distance of H)»' is p(p — 1) by
Remark 3. Therefore, Hp’1 is non-linear.

Second, we prove that if H/*~!> is non-linear, then H!"-* is also non-linear.
Assume that Hf)l’t"‘ is linear. Then, by the iterative construction defined in (5),
for any u = (u [ v'), v = (v | v') € H} ", we have that @, v € "2, where

0= (u,.?.u| pu,?7L pu,u/, 2 )

v =(v,.2v]|pv,27L pv, o/, .”.2.,1)').

Moreover, since H}*'* is linear, (@) + ¢(v) = &((a,.?.,a | pa,?>!, pa,d, P,
;') +A0,1,...,p-1|1,2,...,p-1,0,1,...,p* - 1)) € H/"'*, for some
a=(a|d)e€ H;l_l’tQ and A € Z,>. Considering the coordinates in positions
1 and 2p of @ and v, we have that &(u) + &(v) = d(a) € H* ">, and then
Hlr= 1" s linear, which is a contradiction.

Finally, if H/**>~! is non-linear, then as above we can show that H}''* is
also non-linear, and hence the result follows.

Ezxzample 4. Let ’Hé’l be the Z3Zg-additive GH code of type (3,2;1,1) consid-
ered in Example 2. Note that (0,1,2,0,1,2,0,2,1) + (0,2,1,0,2,1,1,2,0) =
(0,0,0,0,0,0,1,1,1) ¢ &(Hz'"), so Hy' = &(H3") is a non-linear code.

4 Kernel and classification of Z,Z,2-linear GH codes

The kernel of ZyZy-linear Hadamard codes with a7 # 0 and its dimension are
given in [15]. In this section, we generalize these results for Z,Z,-linear GH codes
with a; # 0 and p > 3 prime. First, we found the kernel for these codes, and
then we establish a basis of the kernel, which give us its dimension. Specifically,
the dimension of the kernel of a Z,Z,-linear GH code of type (a1, az;ti,t2),
with a3 # 0, t1,t2 > 1 and p > 3 prime, is t; + 3. Again, note that this result
for p > 3 does not coincide with the known result for p = 2 if t; = 1.

Theorem 4. Let H = H;*** be the Z,Z,2-additive GH code of type (aq, aa;t,
to) with oy # 0, t1,t2 > 1 and p > 3 prime. Let H, be the subcode of H which
contains all the codewords of order p. Then, K(®(H)) = P(H,).

Corollary 1. Let H = H!* be the 7,7, -additive GH code of type (ay, az;ti,
ta) with oy # 0, t1,t2 > 1 and p > 3 prime. Let wy, be the kth row of At and
Q = {(o(wy)/p)wi} 2. Then, ®(Q) is a basis of K(P(H)) and ker(d(H)) =
t1 + to.

Ezample 5. Let ’Hé’Q be the ZsZg-additive GH code generated by Aé’Q given
in Example 1. By Corollary 1, we have that ker(Hgl’Z) =142 = 3. Also by

Corollary 1, we can construct K (Hy?) from a basis. We have that Q@ = {(1 |
3),(013,6,3,6,3,6),(00,0,3,3,6,6)}. Thus,

K(H3?) = (®(1]3),8(0]3,6,3,6,3,6),5(0 | 0,0,3,3,6,6)).



More generally, if ’Hé’z is the Z,Z,2-additive GH code generated by A},’Z with
p > 3 prime, then we have that

K(Hy?) = (2(1|p), (0| u),#(0 | v)),

where u is the p-fold replication of (p,2p,...,(p — 1)p) and v = (0,
(p— 1)) withi= (4,271,4),i € {0,1,...,p—1)}. Therefore, ker(H}?2
that ker(Hy?) = 4, since H,"? is linear [15].

Corollary 2. For any t > 2 and p > 3 prime, there are at least |t/2] + 1
non-equivalent Z,Zy,2-linear GH codes of length p*.

Proof. Considering all the non-negative integer solutions (t1,t2) with ¢1,¢2 > 1
of the equation ¢ + 1 = 2t; + t3, we have that all the non-linear Z,Z,.-linear
GH codes of length p' are H{!=201H! where 1 < t; < [t/2], by Theorem
3. Then, by Corollary 1, the dimensions of the kernels of the these codes are
t — t1 + 1, which gives different values for distinct values of ¢;. Therefore, they
are all non-equivalent codes. We have at least one Z,Zy>-linear GH code of
type (p%,0;0,¢ + 1), which is linear. Therefore, there are at least |¢/2] + 1 non-
equivalent Z,Z,z-linear GH codes of length p*.
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