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Abstract. The ZpZp2 -additive codes are subgroups of Zα1
p × Zα2

p2
, and

can be seen as linear codes over Zp when α2 = 0, Zp2 -additive codes when
α1 = 0, or Z2Z4-additive codes when p = 2. A ZpZp2 -linear generalized
Hadamard (GH) code is a GH code over Zp which is the Gray map image
of a ZpZp2 -additive code. In this paper, we generalize some known results
for ZpZp2 -linear GH codes with p = 2 to any p ≥ 3 prime when α1 ̸= 0.
First, we give a recursive construction of ZpZp2 -additive GH codes of
type (α1, α2; t1, t2) with t1, t2 ≥ 1. Then, we show for which types the
corresponding ZpZp2 -linear GH codes are non-linear over Zp. For these
codes, we compute the kernel and its dimension, which allow us to give
a complete classification of these codes.
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1 Introduction

Let Zp and Zp2 be the ring of integers modulo p and p2, respectively, where
p is a prime. Let Zn

p and Zn
p2 denote the set of all n-tuples over Zp and Zp2 ,

respectively. In this paper, the elements of Zn
p and Zn

p2 will also be called vectors

of length n. The order of a vector u over Zp2 , denoted by o(u), is the smallest
positive integer m such that mu = 0.

A code over Zp of length n is a nonempty subset of Zn
p , and it is linear if it

is a subspace of Zn
p . Similarly, a nonempty subset of Zn

p2 is a Zp2 -additive if it

is a subgroup of Zn
p2 . A ZpZp2-additive code is a subgroup of Zα1

p × Zα2

p2 . Note
that a ZpZp2-additive code is a linear code over Zp when α2 = 0, a Zp2-additive
code when α1 = 0, or a Z2Z4-additive code when p = 2.

The Hamming weight of a vector u ∈ Zn
p , denoted by wtH(u), is the number

of nonzero coordinates of u. The Hamming distance of two vectors u,v ∈ Zn
p ,

denoted by dH(u,v), is the number of coordinates in which they differ. Note
that dH(u,v) = wtH(v − u). The minimum distance of a code C over Zp is
d(C) = min{dH(u,v) : u,v ∈ C,u ̸= v}.
⋆ This work has been partially supported by the Spanish MINECO under Grant
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In [9], a Gray map from Z4 to Z2
2 is defined as ϕ(0) = (0, 0), ϕ(1) = (0, 1),

ϕ(2) = (1, 1) and ϕ(3) = (1, 0). There exist different generalizations of this

Gray map, which go from Z2s to Z2s−1

2 [4,5,6,10,13]. The one given in [10] can be
defined in terms of the elements of a Hadamard code [13], and Carlet’s Gray map
[5] is a particular case of the one given in [13] satisfying

∑
λiϕ(2

i) = ϕ(
∑

λi2
i)

[8]. In this paper, we focus on a generalization of Carlet’s Gray map, from Zps

to Zps−1

p , which is also a particular case of the one given in [17]. Specifically,

ϕ : Zp2 −→ Zp
p (1)

u 7→ (u0, u1)M, (2)

where u ∈ Zp2 ; [u0, u1]p is the p-ary expansion of u, that is u = u0 + u1p with
u0, u1 ∈ Zp; and M is the following matrix of size 2× p:(

0 1 2 · · · p− 1
1 1 1 · · · 1

)
.

Let Φ : Zα1
p ×Zα2

p2 → Zn
p , where n = α1 + pα2, be an extension of the Gray map

ϕ given by
Φ(x | y) = (x | ϕ(y1), . . . , ϕ(yα2

)),

for any x ∈ Zα1
p and y = (y1, . . . , yα2

) ∈ Zα2

p2 .

Let C be a ZpZp2 -additive code over Zα1
p × Zα2

p2 . We say that its Gray map

image C = Φ(C) is a ZpZp2-linear code of length α1 + pα2. Since C can be seen
as a subgroup of Zα1+α2

p2 , it is isomorphic to an abelian structure Zt1
p2 ×Zt2

p , and

we say that C, or equivalently C = Φ(C), is of type (α1, α2; t1, t2). Note that
|C| = p2t1+t2 . Unlike linear codes over finite fields, linear codes over rings do not
have a basis, but there exists a generator matrix for these codes having minimum
number of rows, that is, t1 + t2 rows.

Two structural properties of codes over Zp are the rank and dimension of the
kernel. The rank of a code C over Zp is simply the dimension of the linear span,
⟨C⟩, of C. The kernel of a code C over Zp is defined as K(C) = {x ∈ Zn

p : x+C =
C} [2,14]. If the all-zero vector belongs to C, then K(C) is a linear subcode of
C. Note also that if C is linear, then K(C) = C = ⟨C⟩. We denote the rank of
C as rank(C) and the dimension of the kernel as ker(C). These parameters can
be used to distinguish between non-equivalent codes, since equivalent ones have
the same rank and dimension of the kernel.

A generalized Hadamard (GH) matrix H(p, λ) = (hij) of order n = pλ over
Zp is a pλ×pλ matrix with entries from Zp with the property that for every i, j,
1 ≤ i < j ≤ pλ, each of the multisets {his − hjs : 1 ≤ s ≤ pλ} contains every
element of Zp exactly λ times [11]. An ordinary Hadamard matrix of order 4µ
corresponds to GH matrix H(2, λ) over Z2, where λ = 2µ [1]. Two GH matrices
H1 and H2 of order n are said to be equivalent if one can be obtained from the
other by a permutation of the rows and columns and adding the same element
of Zp to all the coordinates in a row or in a column.

We can always change the first row and column of a GH matrix into zeros
and we obtain an equivalent GH matrix which is called normalized. From a



normalized GH matrix H, we denote by FH the code consisting of the rows of
H, and CH =

⋃
α∈Zp

(FH + α1), where FH + α1 = {h + α1 : h ∈ FH} and 1
denotes the all-one vector. The code CH over Zp is called generalized Hadamard
(GH) code [7]. Note that CH is generally a non-linear code over Zp. Moreover,
if it is of length N , it has pN codewords and minimum distance N(p− 1)/p.

The ZpZp2 -additive codes such that after the Gray map Φ give GH codes are
called ZpZp2 -additive GH codes and the corresponding images are called ZpZp2 -
linear GH codes. It is known that Z2Z4-linear GH codes with α1 = 0 and α1 ̸= 0
can be classified by using either the rank or the dimension of the kernel [12,15].
For ZpZp2-additive GH codes with α1 = 0 and p ≥ 3 prime, it is also known
that the kernel can be used to give a complete classification [3].

This paper is focused on ZpZp2 -linear GH codes with α1 ̸= 0 and p ≥ 3 prime,
generalizing some results given for p = 2 in [15,16] related to the construction,
linearity, kernel and classification of such codes. This paper is organized as fol-
lows. In Section 2, we describe the construction of ZpZp2-linear GH codes of
type (α1, α2; t1, t2) with α1 ̸= 0. In Sections 3 and 4, we establish for which
types these codes are linear, and we give the kernel and its dimension whenever
they are non-linear. We also show that the dimension of the kernel is enough to
classify completely the ZpZp2-linear GH codes with α1 ̸= 0 of a given length,
providing the number of non-equivalent such codes, like it was proved for Z2Z4-
linear GH codes in [15].

2 Construction of ZpZp2-additive GH codes

The description of a generator matrix having minimum number of rows for Z2Z4-
additive GH codes with α1 ̸= 0, as long as an iterative construction of these
matrices, are given in [15,16]. In this section, we generalize these results for
ZpZp2-additive GH codes with α1 ̸= 0 and any p ≥ 3 prime. Specifically, we
define an iterative construction for the generator matrices and establish that
they generate ZpZp2-additive GH codes.

Let 0,1,2, . . . ,p2 − 1 be the vectors having the elements 0, 1, 2, . . . , p2 − 1
repeated in each coordinate, respectively. Let

A1,1
p =

(
1 1 · · · 1 p p · · · p
0 1 · · · p− 1 1 2 · · · p− 1

)
. (3)

Any matrix At1,t2
p with t1 ≥ 1, t2 ≥ 2 or t1 ≥ 2, t2 ≥ 1 can be obtained by

applying the following iterative construction. First, if A is a generator matrix
of a ZpZp2-additive code, that is, a subgroup of Zα1

p × Zα2

p2 , then we denote by
A1 the submatrix of A with the first α1 columns over Zp, and A2 the submatrix
with the last α2 columns over Zp2 . We start with A1,1

p . Then, if we have a matrix
A = At1,t2

p , we may construct the matrices

At1,t2+1
p =

(
A1 A1 · · · A1 A2 A2 · · · A2

0 1 · · · p− 1 p · 0 p · 1 · · · p · (p− 1)

)
(4)



and

At1+1,t2
p =

(
A1 A1 · · · A1 pA1 · · · pA1 A2 A2 · · · A2

0 1 · · · p− 1 1 · · · p− 1 0 1 · · · p2 − 1

)
. (5)

Example 1. Let

A1,1
3 =

(
1 1 1 3 3
0 1 2 1 2

)
be the matrix described in (3) for p = 3. By using the constructions described
in (4) and (5), we obtain A1,2

3 and A2,1
3 , respectively, as follows:

A1,2
3 =

1 1 1 1 1 1 1 1 1 3 3 3 3 3 3
0 1 2 0 1 2 0 1 2 1 2 1 2 1 2
0 0 0 1 1 1 2 2 2 0 0 3 3 6 6


A2,1

3 =

(
1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 · · · 3 3
0 1 2 0 1 2 0 1 2 0 3 6 0 3 6 1 2 1 2 · · · 1 2
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 1 1 · · · 8 8

)
.

Throughout this paper, we consider that the matrices At1,t2
p are constructed

recursively starting from A1,1
p in the following way. First, we add t1 − 1 rows of

order p2, up to obtain At1,1
p ; and then t2 rows of order p up to achieve At1,t2

p .
The ZpZp2 -additive code generated by At1,t2

p is denoted by Ht1,t2
p , and the

corresponding ZpZp2 -linear code Φ(Ht1,t2
p ) by Ht1,t2

p . We also write At1,t2 , Ht1,t2 ,
and Ht1,t2 instead of At1,t2

p , Ht1,t2
p , and Ht1,t2

p , respectively, when the value of p
is clear by the context.

Theorem 1. The ZpZp2-additive code H1,1
p generated by the matrix

A1,1
p =

(
1 1 · · · 1 p p · · · p
0 1 · · · p− 1 1 2 · · · p− 1

)
is a ZpZp2-additive GH code of type (p, p− 1; 1, 1).

Example 2. The Z3Z9-additive code H1,1
3 generated by the matrix A1,1

3 , given in
Example 1, is a Z3Z9-additive GH code of type (3, 2; 1, 1). Indeed, we have that
H1,1

3 = Φ(H1,1
3 ) =

⋃
λ∈Z3

(Φ(A0) + λ1), where A0 = {λ(0, 1, 2 | 1, 2) : λ ∈ Z9},
and then Φ(A0) consists of all the rows of the GH matrix

H(3, 3) =



0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 2 1
0 2 1 0 2 1 1 2 0
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 1 0
0 2 1 1 0 2 0 1 2
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 0 2
0 2 1 2 1 0 2 0 1


. (6)

The Z3Z9-linear code H1,1
3 has length N = 9, pN = 3 · 9 = 27 codewords and

minimum distance N(p− 1)/p = 9(3− 1)/3 = 6.



Theorem 2. Let Ht1,t2
p be a ZpZp2-additive GH code of type (α1, α2; t1, t2) with

t1, t2 ≥ 1 and p prime. Then, with the above constructions, Ht1,t2+1
p and Ht1+1,t2

p

are ZpZp2-additive GH codes of types (pα1, pα2; t1, t2 +1) and (pα1, (p− 1)α1 +
p2α2; t1 + 1, t2), respectively.

Example 3. Let H1,2
3 be the Z3Z9-additive code generated by the matrix A1,2

3

given in Example 1. By Theorem 2, H1,2
3 = Φ(H1,2

3 ) is a Z3Z9-linear GH code
of type (9, 6; 1, 2). Actually, we can write H1,2

3 =
⋃

λ∈Z3
(FH + λ1), where FH

consists of all the rows of a GH matrix H(3, 9). Also, note that H1,2
3 has length

N = 27, pN = 3 · 27 = 81 codewords and minimum distance N(p − 1)/p =
27(3− 1)/3 = 18.

Remark 1. The above constructions (4) and (5) give always ZpZp2 -linear GH
codes with α2 ̸= 0 since the starting matrix A1,1

p has α2 ̸= 0. If α2 = 0, the
ZpZp2-linear GH codes coincide with the codes obtained from a Sylvester GH
matrix, so they are always linear and of type (pt2−1, 0; 0, t2) [7]. Therefore, we
only focus on the ones with α2 ̸= 0 to study whether they are linear or not.

Remark 2. Let H = Ht1,t2
p be a ZpZp2-additive GH code of type (α1, α2; t1, t2)

with t1, t2 ≥ 1 and p prime. Let H = Φ(Ht1,t2
p ) be the corresponding ZpZp2 -

linear GH code of length α1 + pα2. Then, since H is a GH code, its minimum
distance is

(p− 1)(α1 + pα2)

p
.

Let H1 (respectively, H2) be the punctured code of H by deleting the last α2

coordinates over Zp2 (respectively, the first α1 coordinates over Zp). Note that,
by construction, H1 is a GH code over Zp of length α1 and minimum distance
(p− 1)α1/p. Therefore, H2 = Φ(H2) has minimum distance (p− 1)α2.

Remark 3. Since the length of the ZpZp2 -linear GH code Φ(H1,1
p ) is p2, its min-

imum distance is (p− 1)p2/p = p(p− 1) by Remark 2.

3 Linearity of ZpZp2-linear GH codes

In [15], it is shown that the Z2Z4-linear GH codes of type (α1, α2; 1, t2) are the
only ones which are linear, when α1 ̸= 0 and α2 ̸= 0. The next result shows
that there are no ZpZp2 -linear GH codes of type (α1, α2; t1, t2), with α1 ̸= 0,
t1, t2 ≥ 1 and p ≥ 3 prime, which are linear. Note that this result for p ≥ 3 does
not coincide with the known result for p = 2 if t1 = 1.

Theorem 3. Let Ht1,t2
p be the ZpZp2-additive GH code of type (α1, α2; t1, t2)

with α1 ̸= 0, t1, t2 ≥ 1 and p ≥ 3 prime. Then, Ht1,t2
p = Φ(Ht1,t2

p ) is non-linear.

Proof. First, we prove that H1,1
p is non-linear. Since u = (0, 1, . . . , p − 1 |

1, 2, . . . , p − 1) ∈ H1,1
p , then (p − 1)u = (0, (p − 1) · 1, . . . , (p − 1) · (p − 1) |

(p− 1) · 1, (p− 1) · 2, . . . , (p− 1) · (p− 1)) ∈ H1,1
p . Since ϕ(1)+ϕ(p− 1) = 0, then



the first 2p coordinates of the vector Φ(u) + Φ((p − 1)u) of length p2 are zero.
Therefore, wtH(Φ(u)+Φ((p− 1)u)) ≤ p2 − 2p = p(p− 2) < p(p− 1), and hence,
Φ(u) + Φ((p − 1)u) /∈ H1,1

p , since the minimum distance of H1,1
p is p(p − 1) by

Remark 3. Therefore, H1,1
p is non-linear.

Second, we prove that if Ht1−1,t2
p is non-linear, then Ht1,t2

p is also non-linear.
Assume that Ht1,t2

p is linear. Then, by the iterative construction defined in (5),
for any u = (u | u′), v = (v | v′) ∈ Ht1−1,t2

p , we have that ū, v̄ ∈ Ht1,t2
p , where

ū = (u, p. . ., u | pu, p−1. . . , pu, u′, p2

. . ., u′)

v̄ = (v, p. . ., v | pv, p−1. . . , pv, v′, p2

. . ., v′).

Moreover, since Ht1,t2
p is linear, Φ(ū) + Φ(v̄) = Φ((a, p. . ., a | pa, p−1. . . , pa, a′, p2

. . .
, a′) + λ(0,1, . . . ,p− 1 | 1,2, . . . ,p− 1,0,1, . . . ,p2 − 1)) ∈ Ht1,t2

p , for some
a = (a | a′) ∈ Ht1−1,t2

p and λ ∈ Zp2 . Considering the coordinates in positions
1 and 2p of ū and v̄, we have that Φ(u) + Φ(v) = Φ(a) ∈ Ht1−1,t2

p , and then
Ht1−1,t2

p is linear, which is a contradiction.
Finally, if Ht1,t2−1

p is non-linear, then as above we can show that Ht1,t2
p is

also non-linear, and hence the result follows.

Example 4. Let H1,1
3 be the Z3Z9-additive GH code of type (3, 2; 1, 1) consid-

ered in Example 2. Note that (0, 1, 2, 0, 1, 2, 0, 2, 1) + (0, 2, 1, 0, 2, 1, 1, 2, 0) =
(0, 0, 0, 0, 0, 0, 1, 1, 1) /∈ Φ(H1,1

3 ), so H1,1
3 = Φ(H1,1

3 ) is a non-linear code.

4 Kernel and classification of ZpZp2-linear GH codes

The kernel of Z2Z4-linear Hadamard codes with α1 ̸= 0 and its dimension are
given in [15]. In this section, we generalize these results for ZpZp2 -linear GH codes
with α1 ̸= 0 and p ≥ 3 prime. First, we found the kernel for these codes, and
then we establish a basis of the kernel, which give us its dimension. Specifically,
the dimension of the kernel of a ZpZp2 -linear GH code of type (α1, α2; t1, t2),
with α1 ̸= 0, t1, t2 ≥ 1 and p ≥ 3 prime, is t1 + t2. Again, note that this result
for p ≥ 3 does not coincide with the known result for p = 2 if t1 = 1.

Theorem 4. Let H = Ht1,t2
p be the ZpZp2-additive GH code of type (α1, α2; t1,

t2) with α1 ̸= 0, t1, t2 ≥ 1 and p ≥ 3 prime. Let Hp be the subcode of H which
contains all the codewords of order p. Then, K(Φ(H)) = Φ(Hp).

Corollary 1. Let H = Ht1,t2
p be the ZpZp2-additive GH code of type (α1, α2; t1,

t2) with α1 ̸= 0, t1, t2 ≥ 1 and p ≥ 3 prime. Let wk be the kth row of At1,t2 and
Q = {(o(wk)/p)wk}t1+t2

k=1 . Then, Φ(Q) is a basis of K(Φ(H)) and ker(Φ(H)) =
t1 + t2.

Example 5. Let H1,2
3 be the Z3Z9-additive GH code generated by A1,2

3 given
in Example 1. By Corollary 1, we have that ker(H1,2

3 ) = 1 + 2 = 3. Also by
Corollary 1, we can construct K(H1,2

3 ) from a basis. We have that Q = {(1 |
3), (0 | 3, 6, 3, 6, 3, 6), (0 | 0, 0, 3, 3, 6, 6)}. Thus,

K(H1,2
3 ) = ⟨Φ(1 | 3), Φ(0 | 3, 6, 3, 6, 3, 6), Φ(0 | 0, 0, 3, 3, 6, 6)⟩.



More generally, if H1,2
p is the ZpZp2-additive GH code generated by A1,2

p with
p ≥ 3 prime, then we have that

K(H1,2
p ) = ⟨Φ(1 | p), Φ(0 | u), Φ(0 | v)⟩,

where u is the p-fold replication of (p, 2p, . . . , (p− 1)p) and v = (0, p · 1, . . . , p ·
(p− 1)) with i = (i, p−1. . . , i), i ∈ {0, 1, . . . , p− 1)}. Therefore, ker(H1,2

p ) = 3. Note

that ker(H1,2
2 ) = 4, since H1,2

2 is linear [15].

Corollary 2. For any t ≥ 2 and p ≥ 3 prime, there are at least ⌊t/2⌋ + 1
non-equivalent ZpZp2-linear GH codes of length pt.

Proof. Considering all the non-negative integer solutions (t1, t2) with t1, t2 ≥ 1
of the equation t + 1 = 2t1 + t2, we have that all the non-linear ZpZp2 -linear
GH codes of length pt are Ht1,t−2t1+1

p , where 1 ≤ t1 ≤ ⌊t/2⌋, by Theorem
3. Then, by Corollary 1, the dimensions of the kernels of the these codes are
t − t1 + 1, which gives different values for distinct values of t1. Therefore, they
are all non-equivalent codes. We have at least one ZpZp2-linear GH code of
type (pt, 0; 0, t+ 1), which is linear. Therefore, there are at least ⌊t/2⌋+ 1 non-
equivalent ZpZp2-linear GH codes of length pt.
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