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Abstract. We obtain algorithmically effective versions of the dense lattice sphere packings
constructed from orders in Q-division rings by the first author. The lattices in question are
lifts of suitable codes from prime characteristic to orders O in Q-division rings and we prove
a Minkowski–Hlawka type result for such lifts. Exploiting the additional symmetries under
finite subgroups of units in O, we show that this leads to effective constructions of lattices
approaching the best known lower bounds on the packing density ∆n in a variety of new
dimensions n. This unifies and extends a number of previous constructions.
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1 Introduction

The sphere packing problem in Rn is concerned with maximizing the proportion of Euclidean
space covered by a set of balls of equal radius and disjoint interiors. We will mostly be concerned
with the lattice sphere packing problem, where the balls are required to be centered at points on
an n-dimensional lattice Λ. The proportion achieved by a particular lattice, called the packing
density of Λ, is then given by

∆(Λ) :=
Vol(Bn(λ1(Λ)))

2nVol(Λ)
,

where λ1(Λ) denotes the shortest vector length in Λ, Bn(r) the ball of radius r and Vol(Λ) denotes
the covolume of the lattice. We also denote by ∆n the supremum of lattice packing densities
that can be achieved in n dimensions. Its value is only known in a handful of dimensions, see for
instance the summary [9, 1.5.] as well as [7]. The density is achieved by highly symmetric lattices
such as root lattices or the Leech lattice. Owing to highly celebrated results [14,29,8], some of
these are even known to solve the general sphere packing problem. For arbitrary dimensions, the
best known upper and lower bounds on ∆n are however exponentially far apart as n increases
(see e.g., the survey article [6] for more background). In this article we shall be concerned with
lower bounds as n increases and with giving effective constructions of lattices approaching these
bounds.

The classical Minkowski–Hlawka theorem [15] states that ∆n ≥ 2 ζ(n)
2n , a bound which Rogers

[21] later improved by a linear factor to∆n ≥ cn
2n for c = 2/e ≈ 0.74. The constant was subsequently

sharpened to c = 1.68 by Davenport-Rogers [10] and c = 2 by Ball [2] for all n. More recently,
Vance [26] showed using lattices which are modules over the Hurwitz integers that one may take
c = 24/e ≈ 8.83 and Venkatesh [28] showed that for n large enough one may take c = 65963.
Moreover, by considering lattices from maximal orders in cyclotomic fields, Venkatesh was able
to achieve for infinitely many dimensions the improvement ∆n ≥ n log logn

2n+1 . The first author [13]
then extended such results to lattices coming from orders O in arbitrary Q-division algebras. This
was achieved by proving a Siegel mean value theorem (see [24,13]) in this setting and exploiting
the additional symmetries of the lattices under the group of finite order units in O× to obtain

dense packings. In particular, new sequences of dimensions such that ∆n ≥ c1·n log log(n)c2

2n for
constant c1, c2 > 0 are uncovered. In this paper, we make these purely existential results for Q-
division algebras effective by exhibiting finite sets of lattices which for large enough dimension
must contain a lattice approaching the non-constructive lower bound.
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Indeed, for orders O in a Q-division algebra, we consider for suitable primes p and for t ≥ 2
the reduction map ϕp : Ot → (O/pO)t and may identify the quotient with a product of matrix
rings over a finite field Fq. The sets of lattices Lp we consider are then re-scaled pre-images via
ϕp of codes in (O/pO)t of a certain fixed Fq-dimension. We refer the reader to Section 3 for
detailed statements, whereas some useful preliminary results on lattices from division algebras are
established in Section 2.

We then exploit in Section 4 the extra symmetries of these lattices under finite subgroups of
O× to obtain:

Theorem 1. Let A be a central simple division algebra over a number field K with ring of integers
OK . Let O be an OK-order in A. Let n2 = [A : K], m = [K : Q] and let t ≥ 2 be a positive integer.
Let G0 be a fixed finite subgroup of O×. Then there exists a lattice Λ in dimension n2mt achieving

∆(Λ) ≥ |G0| · t
2mn2t · e(1− e−t)

.

Moreover, there exists for any ε > 0 an O-lattice Λε in dimension n2mt of packing density

∆(Λε) ≥ (1− ε) · |G0| · t
2mn2t · e(1− e−t)

which can be constructed effectively. Indeed, Λε is obtained by applying Proposition 6 to a suitable
sublattice of Ot obtained as a pre-image via reduction modulo primes p of OK of large enough
norm of a code. The code in question is isomorphic to k copies of simple left O/pO-modules for
some nt− t < k < nt.

Note that Proposition 6 mentioned in the theorem is a version of a lemma of Minkowski ex-
tended to the division algebra setting. The theorem above is derived from Theorem 5 by mimicking
an approach of Rogers [21], later used by Vance [26] and Campello [5].

In order to obtain the densest packings asymptotically, one therefore seeks families of orders O
with large finite unit groups G0 ⊂ O∗. Building on Amitsur’s classification [1] and following [13], we
give examples of such families. For instance, one may consider quaternion algebras over cyclotomic
fields and hope to combine the improvements over the Minkowski-Hlawka bounds obtained by
Vance and Venkatesh. However, in this particular case, even if the lower bound obtained exceeds
n log log n·2−(n+1) in less than astronomical dimensions, due to a parity condition on the dimension
the asymptotic growth is smaller (see also [13, Fig. 1]).

In particular, we obtain in Proposition 2:

Proposition 2. Let mk =
∏

p≤k prime
2∤ord2 p

p and set nk := 8φ(mk). Then for any ε > 0 there is an

effective constant cε such that for k > cε a lattice Λ in dimension nk with density

∆(Λ) ≥ (1− ε)
24 ·mk

2nk

can be constructed in e4.5·nk log(nk)(1+o(1)) binary operations. This construction leads to the asymp-

totic density of ∆(Λ) ≥ (1− e−nk) 3·nk(log lognk)
7/24

2nk
.

We ought to stress that such effective lower bounds on the density are not the first of their
kind but that there is a rather rich history of such results. Rush [23], building on work with Sloane
[22], recovered the Minkowski-Hlawka bound via coding-theoretic results such as the Varshamov-
Gilbert bound and by lifting codes via the Leech-Sloane Construction A (see [9, Chapter 5]). The
connection between random coding and such averaging results was further explicited by Loeliger
[16]. This leads to families of approximate size en

2 logn in which to search for lattices achieving
the Minkowski-Hlawka bound. Gaborit and Zémor [12] exploited additional structures to reduce
the family size to en logn. Finally, Moustrou [19] used a similar approach for cyclotomic lattices to
obtain an effective version of Venkatesh’s result. This approach was further formalized by Campello
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[5], where an example of such results for quaternion algebras is also mentioned. Our work thus owes
a lot to these existing constructions. In particular, our approach is chiefly based on Moustrou’s and
Campello’s work [19,5] and simply extends the scope of their results to division algebras, allowing
symmetries from arbitrarily large non-commutative finite groups. We also note that the utility of
codes from division rings is well-studied, see for example [4], [11], [27].

We hope, then, that this article provides a useful addition to both the mathematical and coding-
theoretic literature. The effective results we arrive at in Section 5 typically have a complexity of
eC·n logn(1+o(1)), which is similar to [19, Theorem 1]. However, effective version of Vance’s result

(see Corollary 1) has complexity e1/4·n
2 logn(1+o(1)) and it should be similar for other constructions

obtained by increasing the O-rank of the lattices.
The large running times correspond to the times taken in running an exhaustive search through

all the finite candidates of lattices and it would be interesting to examine if one can further reduce
the complexity of this search. It should be remarked that the approach mentioned in this research
can still be used to quickly generate one of these random lattices in high dimensions that have
prescribed symmetries and large minimal vectors on average.

We conclude by remarking that the mean value results for lattice sums in Lp for p → ∞ as
in Theorem 5 prompt the question of whether the points in the moduli space of O-lattices of
fixed dimension corresponding to Λ ∈ Lp become equidistributed in the limit in p. This leads to
an interesting number-theoretic question emanating from coding theory that the authors hope to
pursue in their future work.

2 Preliminaries on division rings

In this section, we recall some definitions and results on central simple algebras and in particular
division rings. The primary reference is Reiner’s book [20]. Let OK denote a Dedekind ring with
quotient field K and let A denote a separable K-algebra.

Definition 1. An OK-order in A is a subring O of A having the same identity element and such
that O is a full OK-lattice in K, i.e. O is a finitely generated OK-submodule of A such that
K · O = A.

A prime ideal of O is a proper two-sided ideal p in O such that K · p = A and such that for
every pair of two sided ideals S, T in Λ, we have that S · T ⊂ p implies S ⊂ p or T ⊂ p.

For a prime p of OK we shall denote by Op, Ap the localizations at p of the OK-order O and

of A and by Ôp, Âp the respective completions. Finally let rad(R) denote the Jacobson radical of
a ring R. Then we have (see [20, Thm 22.3,22.4]) the characterization:

Theorem 3. The prime ideals of an OK-order O coincide with the maximal two-sided ideals of
O. If p is a prime ideal of Λ, then p = p ∩ OK is a non-zero prime of OK , and O := O/p is
a finite dimensional simple algebra over the residue field OK/p. Moreover, when A is a central
simple K-algebra, there is a bijection p ↔ p between the set of primes of O and of OK , given by

p = R ∩ p and p = O ∩ rad(Op).

We now summarize the behavior of O and A under localization as well as the splitting behavior
for central simple algebras:

Theorem 4. Let O be a maximal order in a central simple K-algebra A. Let p denote a prime of
OK . Then the completion Âp is a central simple K̂p-algebra and Ôp is a maximal order. Moreover:

1. For almost every prime p of OK , we have that

Âp
∼= Mn(K̂p), (2.1)

with n2 = [A : K] ( split or unramified case). Moreover p is split if and only if the corresponding
prime ideal p of O as in Theorem 3 is just pO.
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2. The order Λ = Mn(Ôp) is a maximal ÔKp
-order in Mn(K̂p) having a unique maximal two-sided

ideal πK̂p
Λ, where πK̂p

is a prime element of the discrete valuation ring ÔKp
. The powers

(πK̂p
Λ)n = πn

K̂p
· Λ for n = 0, 1, 2, . . .

exhaust all the non-zero two-sided ideals of Λ and any maximal ÔKp
-order is of the form

uΛu−1 for u ∈ GLn(K̂p).
3. For all but finitely many primes p of OK , the quotient O/pO is isomorphic to Mn(Fq), where

OK/pOK
∼= Fq.

Proof. These are well-known results, see e.g. [20, Theorems 17.3, 32.1].

In what follows, we will thus use the same notation p for the primes ofOK and the corresponding
prime in O in the split case.

2.1 Lattices from orders

The central simple algebras A are equipped with natural embeddings A ↪→ A⊗Q R. An OK-order
then embeds as a lattice into this space.

Lemma 1. Any semisimple R-algebra A admits an involution ( )∗ : A → A such that the following
conditions are satisfied.

– For any a, b ∈ A, we have (ab)∗ = b∗a∗.
– The trace yields a positive definite quadratic form a 7→ T(a∗a) on A, meaning that T(a∗a) is

always non-negative and is zero only when a = 0. Moreover, this quadratic form induces the
inner product ⟨x, y⟩ = T(x∗y) on A.

In particular, when A is a division algebra over Q, such an involution exists on A⊗Q R.

Proof. See e.g. [13, Corollary 35]

We will denote A ⊗Q R by AR. Involutions with the properties as described in Lemma 1 will
henceforth be called “positive involutions”. An element a ∈ AR such that a∗ = a and x 7→ T(x∗ax)
is a positive definite real quadratic form on AR is called symmetric and positive definite.

For lattice constructions, we will be considering t ≥ 2 copies of orders O in division algebras A
with center a number field K and our lattices will be Ot ⊆ At ↪→ (AR)

t. We will endow the space
At

R with the norm induced by the following quadratic form:

(x1, x2, . . . , xt) 7→
t∑

i=1

T(x∗
i axi),

where (−)∗ is a positive involution as defined above and a ∈ AR is a symmetric positive definite
element to be fixed later.

2.2 Norm-trace inequality

Recall that for a finite dimensional algebra A over any field k we have norm and trace functions
NA/k, TA/k : A → k given by the determinant and trace of the left multiplication maps respectively.
It will be useful to establish some of their properties; for instance we later use the norm-trace
inequality to give lower bounds on the Euclidean norm of certain lattice points via Lemma 5.

Lemma 2. Consider a finite dimensional semisimple R-algebra AR together with a positive in-
volution ( )∗. Let a ∈ AR be a symmetric positive definite element and let d = dimR AR. Then

N(a) > 0, T(a) > 0 and 1
d T(a) ≥ N(a)

1
d .

Hence for a ∈ AR symmetric positive definite, we get

1

d
T(x∗ax) ≥ N(x)

2
d N(a)

1
d . (2.2)
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Proof. See [13, Lemma 40].

The following definition and ensuing lemma can also be found in [20, 9.13-14].

Definition 2. Suppose A is a central simple L-algebra and K ⊆ L is a subfield such that [L :
K] < ∞. Then for each a ∈ A, we define the “relative reduced trace” trA/K : A → K and “relative
reduced norm” nrA/K : A → K as

trA/K = TL/K ◦ trA/L, nrA/K = NL/K ◦ nrA/L .

Lemma 3. When [L : K] < ∞ for any a ∈ A:

TA/K(a) =
√
[A : L] trA/K , NA/K(a) = nrA/K(a)

√
[A:L].

We may now establish the following lemmas:

Lemma 4. Let A be a division algebra over Q whose center is K and [A : K] = n2. Let O ⊆ A
be a maximal order in the division algebra. Let p be a prime ideal of OK for which A splits and
let Fq = OK/p denote the residue field. Then the following diagram commutes:

O OK

O/pO ∼= Mn(Fq) Fq,

ϕp

nrA/K

πp

det

where the vertical maps designate reduction modulo p.

Proof. Follows (not so easily) from [20, Theorem 17.3].

Lemma 5. With the same setting, let ( )∗ : AR → AR be a positive involution. If x ∈ O \ {0}
(which we may identify with its image in AR) is such that ϕp(x) is a non-invertible matrix, then

∥x∥ ≥
(√

[A : Q] N(a)
1

2[A:Q]

)
q

1√
[A:K][K:Q] . (2.3)

where a ∈ AR is symmetric positive definite and ∥x∥2 := T(x∗ax) on AR.

Proof. We get by Lemma 4 that p | nrA/K(x) and hence

NK/Q(p) | NK/Q ◦nrA/K(x) ⇒ NK/Q(p) | nrA/Q(x) ⇒ NK/Q(p)
√

[A:K] | NA/Q(x).

The claim then follows From Lemma 2.

Lemma 6. Let A be a central simple division K-algebra for K a number field and let O be a
maximal OK-order which we identify with the corresponding lattice in AR = A ⊗Q R. Then, with
respect to any quadratic form qa(x) = T(x∗ax) for a symmetric positive definite element a ∈ AR,
one may define the shortest vector length λ1,qa , Hermite parameter γqa and covering radius τqa ,
and they are subject to the following:

1. The shortest vector length satisfies λ1,qa(O) ≥
√
[A : Q] ·N(a)1/(2[A:Q]).

2. For any two-sided O-ideal I (by which we mean a full OK-lattice in O), the Hermite parameter
satisfies

γqa(I) ≥
[A : Q]

d(O/Z)1/[A:Q]

3. The covering radius satisfies

τqa(O) ≤ d(O/Z)1/[A:Q] ·

(√
[A : Q]

2π
+

3

π

)
·N(a)−1/(2[A:Q]),

where d(O/Z) denotes the discriminant of O computed with respect to a Z-basis.

Proof. Proof can be generalized from [3, Section 4].
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3 An averaging result for lifts

As before, let A denote a central simple K-algebra for K a number field and assume A is a division
ring. We set n2 = [A : K] and m = [K : Q]. Let O denote an order in A.

Lemma 7. Let k be a finite field. Let R be a f.d. semisimple k-algebra and V be a simple (left)
R-module of finite dimension over k. Fix integers n1 ≤ n2 ≤ n3. Consider V ⊕n3 as an R-module
and consider the sets

U = {v ∈ V ⊕n3 | Rv ≃ V ⊕n1}, Cn2,n3
= {C ⊆ V ⊕n3 | C is an R-submodule, C ≃ V ⊕n2}.

Assuming that U is non-empty, then the number |{C ∈ Cn2,n3
| u ∈ C}| is independent of u.

Proof. For each u ∈ U , C 7→ C/Ru is a bijection from {C ∈ Cn2,n3
| u ∈ C} to Cn2−n1,n3−n1

.

Finally, we define following [5, Def 2]:

Definition 3. A function f : Rd → R is called semi-admissible if f is Riemann-integrable and
there exist positive constants b, δ > 0 such that

|f(x)| ≤ b

(1 + ∥x∥)d+δ
for all x ∈ Rd.

Theorem 5. For an integer t ≥ 2 we consider an infinite family of surjective reduction maps
ϕp : Ot → Mn(Fq)

t as given in each coordinate by Lemma 4. Let f : Rn2mt → R be a semi-
admissible function. For a fixed n ≤ k < nt, set

Lk,p = {βpϕ
−1
p (C) | C ∈ Ck,p}, Ck,p = {C ⊆ Mn(Fq)

⊕t | C is a Mn(Fq)-submodule ≃ (Fn
q )

⊕k}.

where the constant βp normalizing the covolume of lattices in Lk,p to V := Vol(Ot) is given by

βp = q
nk−n2t

n2mt . Then if (n− 1)t < k < nt, we have that

lim
p→∞

ELk,p

 ∑
x∈(βpϕ

−1
p (C))∗

f(x)

 ≤ V −1 ·
∫
Rn2mt

f(x)dx,

where the limit is taken over primes in the family and (βpϕ
−1
p (C))∗ denotes the non-zero vectors

in βpϕ
−1
p (C).

Proof. Let us define Up = {v ∈ Mn(Fq)
⊕t | dimFq

(Mn(Fq)v) = n2}.
Now, let us show that the following sum tends to zero as p → ∞.∑

x∈(βpϕ
−1
p (C))∗

ϕp(x/βp)/∈Up

f(x) =
∑

x∈(ϕ−1
p (C))∗

ϕp(x)/∈Up

f(βpx)

If x ∈ O⊕t is such that ϕp(x) /∈ Up, then at least one of the O-coordinates will guarantee the
following lower bound from Lemma 5,

∥βpx∥ ≫ βp · q
1

nm = q
nk−n2t

n2mt · q 1
nm = q

1
nmt (k−(nt−t)), (3.1)

which gets arbitrarily large as p → ∞. Since f decays rapidly at infinity we get for each individual
lattice in Lp that this sum converges to 0 as p → ∞.

Now we discuss the terms that remain. Observe that Lemma 7 forces that if ϕp(x) ∈ Up,
then |Up||{C ∈ Ck | ϕp(x) ∈ C}| ≤ |Ck|qnt. Now let g : Mn(Fq)

⊕t → R+ denote the function
g(c) =

∑
x∈ϕ−1

p (c)∗ f(βpx). We have that

ECk
[
∑

c∈C∩Up

g(c)] =
∑
x∈Up

ECk
[g(x)1C(x)]

=
∑
x∈Up

g(x)
|{C ∈ Ck | ϕp(x) ∈ C}|

|Ck|
≤
∑
x∈Up

g(x)
qnk

|Up|
.
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The result now follows: note that we have an approximation of the Riemann integral of f as

lim
p→∞

∑
x∈O⊕t\{0}

βn2mt
p f(βpx) = V −1

∫
Rn2mt

f(x)dx

since βp → 0+ as p becomes large and the ratio
|Up|

|Mn(Fq)|t → 1, as p → ∞. Switching the limit in p

and summation in r is allowed by dominated convergence, as f decays rapidly.

4 Improved bounds

We will now show how to leverage the extra symmetries under finite groups G0 ⊂ O× of the
lattices obtained in Lp in order to obtain sphere packings of density exceeding the Minkowski–
Hlawka bound.

Given a lattice Λ ⊂ At
R which is an O-module and such a choice of norm we however first

define the k-th A-minimum mink(Λ) to be the smallest r such that the closed ball BAR(r) of
radius r contains k AR-linearly independent lattice vectors (under the left AR-action on At

R). In
particular, min1(Λ) is the shortest vector length λ1(Λ) in Λ. We begin by remarking that a lemma
of Minkowski [18] which was extended by Vance [26, Theorem 2.2] holds even more generally:

Proposition 6. Let t ≥ 2 and Λ denote an O-lattice in At
R. Then Λ contains a left AR-module

basis {v1, . . . , vt} such that ∥vi∥ = mini(Λ). Moreover, if Vol(Λ) = 1, there exists an O-lattice Λ′

of covolume one in At
R such that λ1(Λ

′) =
∏t

i=1 mini(Λ)
1/t.

Proof. One must cautiously generalize the proof of [26, Theorem 2.2] (replacing 4 by the appro-
priate dimension mn2).

Remark 1. Doing only slight modifications of the SMP algorithm, effectively finding the vi can
be achieved in an exponential running time of O(22t). Details can be found in [17].

We also record the lemma:

Lemma 8. Let G0 ⊂ O∗ denote a finite group. Then any O-lattice Λ ∈ Lp in Theorem 5 is G0-
symmetric. Furthermore, we may choose a symmetric positive definite element a ∈ AR such that
for all such Λ the induced norm satisfies

∥x∥2 =

t∑
i=1

T(x∗
i axi) = ∥g · x∥2, ∀g ∈ G0, x ∈ Λ.

Proof. The morphisms ϕp preserve the multiplicative structure and the codes in C we are pulling
back are ϕp(O)-modules. For the second part, we may set a =

∑
g∈G0

g∗g.

From now on, we may and will assume a norm as in Lemma 8 has been chosen on AR. We can
prove Theorem 1.

Proof. (of Theorem 1)
We define f to be the radial function fr of bounded support given by

fr(y) =


1

mn2 if 0 ≤ ∥y∥ < re(1−t)/mn2t

1
mn2t − log(∥y∥r ) if re(1−t)/mn2t ≤ ∥y∥ ≤ re1/mn2t

0 else

This function is indeed semi-admissible and we have that
∫
Rmn2t fr(y)dy = Vmn2t · rmn2t · e(1−e−t)

mn2t ,
where Vmn2t denotes the volume of the unit ball in mn2t-dimensional Euclidean space. For a small
0 < ε < 1 we may find r ≥ 0 so that

Vmn2t · rmn2t · e(1− e−t)

mn2t
= (1− ε) · |G0||Vol(Ot)|

mn2
.
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Taking Lp and k satisfying the assumptions of Theorem 5, we may therefore for p large enough
find a lattice Λ ∈ Lp of volume Vol(Ot) such that

∑
y∈Λ∗

fr(y) ≤ (1− ε)
|G0|
mn2

<
|G0|
mn2

.

We now use the fact that the units of finite order G0 < O× act freely on non-zero vectors of Λ and
that ∥gv∥ = ∥v∥ for g ∈ G0 for our choice of norm (see Lemma 8). Indeed, letting {v1, . . . , vt} be
linearly independent vectors achieving the A-minima ∥vj∥ = minj(Λ) as guaranteed by Proposition
6, we then have that ∑

y∈Λ∗

fr(y) ≥
t∑

j=1

∑
g∈G0

fr(gvj) = |G0|
t∑

j=1

fr(vj).

In other words,
∑t

j=1 fr(vj) < 1/(mn2) so that by definition of fr we must have

min
j

(Λ) ≥ re(1−t)/(mn2t) for all j. (4.1)

Moreover, it must then be by definition of fr that

t∑
j=1

log

(
minj(Λ)

r

)
> 0 ⇒

t∏
j=1

min
j

(Λ)1/t > r, (4.2)

and hence from proposition 6 we deduce the existence of a lattice Λ̃ with volume equal to Vol(Λ)
and shortest vector length λ1(Λ̃) > r. We thus obtain for all such ε the existence of a lattice Λ̃ε

of volume Vol(Ot) and packing density

∆(Λ̃ε) ≥ (1− ε) · |G0| · t
2mn2t · e(1− e−t)

.

Letting ε → 0, the result follows by Mahler compactness.

Remarks 7.
The lower bounds on the density in Theorem 1 have the advantage of producing a factor t in the
numerator for lattices constructed from Ot. Via a simpler approach, taking f to be the indicator
function of a ball one finds an O- lattice Λ which outperforms the bound above in the case when
t = 2. This is exactly the lower bound obtained in [13].

4.1 Classification of finite subgroups of O× and bounds.

See [13, 2.2–3].

5 Notes on effectivity

Our results such as Theorem 5 imply that dense lattices in dimension mn2t can be found among
pre-images of codes in characteristic p as p → ∞. In this last section we show how large it suffices

to take p in order to guarantee a lattice of packing density greater than (1−ε) |G0|
2mn2t

is found, with
G0 < O∗ designating the units of finite order in O.

5.1 Varying the division ring

We first focus on the case of t = 2 in Theorem 1 when in fact the better bounds are obtained by
taking the simpler indicator function f = 1B(r) of a ball of appropriate radius as in Remark 7.
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Theorem 8. Let A denote central simple division K-algebras for number fields K and denote
[A : K] = n2 and [K : Q] = m. Let O denote a maximal order in such A. Fix 0 < ε < 1. Assume
the prime p|p in OK is chosen large enough with respect to m,n so that the size of the residue field
|OK/p| = q satisfies:

1. we have as m,n increase the relation:

(n2m)2Vol(O)2/(mn2)|G0|−1/(mn2) = o(q1/mn),

2. the ratio
|Mn(Fq)|2

|Mn(Fq)|2−|Mn(Fq)\GLn(Fq)|2 < (1 + ε/3).

Then there exists an effective constant Cε > 0 such that in dimension 2n2m > Cε there exists a
lattice Λ ∈ Lp with packing density

∆(Λ) ≥ (1− ε)
|G0|
22n2m

.

Here Lp denotes the set of scaled preimages of generalized codes of Fq-dimension 2n2 − n via
the reduction map ϕp : O2 → (O/pO)2 as in Theorem 5.

Proof. Tracing through the proof of Theorem 5 for t = 2 and k = 2n−1 (the only sensible choice),
we find that the term ∑

x∈(ϕ−1
p (C))∗,ϕp(x)/∈Up

f(βpx)

is trivial for f = 1B(r) and some C ∈ Ck,p as soon as

r < n
√
mq

1
2nm ≤

(
N(a)1/2n

2m · n
√
m
)
q

1
2nm . (5.1)

via Lemma 5 and (3.1), where a =
∑

g∈G0
g∗g.

The expected value for the remaining terms for fixed characteristic p can then be seen to be
bounded by a classical geometry of numbers result (see [5, Lemma 4] or [19, Lemma 3 (2)])

qn(2n−1)

q2n2 − (qn2 −
∏

i(q
n − qi))2

∑
x∈(O2)∗

1B(r)(βpx) ≤
qn(2n−1)(r + βpτ(O2))2n

2m

q2n2 − (qn2 −
∏

i(q
n − qi))2

V2n2m

β2n2m
p Vol(O2)

,

where τ(O2) denotes the packing radius of O2 and Vd denotes the volume of the d-dimensional

unit ball. Writing Sn(q) :=
qn(2n−1)

q2n2−(qn2−
∏n−1

i=0 (qn−qi))2
≥ β2n2m

p we arrive at:

E ≤ Sn(q)

β2n2m
p

r2n
2m V2n2m

Vol(O2)
·
(
1 +

τ(O2)βp

r

)2n2m

(5.2)

Observe now that Sn(q)

β2n2m
p

=
|Mn(Fq)|2

|Mn(Fq)|2−|Mn(Fq)\GLn(Fq)|2 , so that we can assume q is large enough so

that Sn(q)

β2n2m
p

< (1 + ε/3).

It now suffices to show that under the parameters above, we can bound
(
1 +

τ(O2)βp

r

)2n2m

<

(1 + ε/3) for large enough dimension, since then we get from the inequality (5.2) the existence of
a lattice in Lp with the desired lower bound on the paking density. Recall that βp = q−1/2nm with
our parameters and we have from Lemma 6 that

τ(O2) =
√
2 · τ(O) ≤ Vol(O)2/n

2m · (n
√
m+ 6)/(

√
2π).

We thus have
τ(O2)βp

r
≲ Vol(O)1/(mn2)|G0|−1/(2mn2)q−1/(2mn)
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But under the assumptions of the theorem on q, the result now follows since as mn2 goes to

infinity the term 2mn2 · τ(O2)βp

r becomes arbitrarily small. Assuming p and q chosen large enough
for each n,m as in the assumptions of the theorem, we get an effective constant Cε guaranteeing(
1 +

τ(O2)βp

r

)2n2m

< (1 + ε/3) for n2m > Cε.

We may then for instance apply this result to specific families of maximal orders in division
rings of increasing Q-dimension. One may arrange for the size of the finite units G0 to be known in
this family via Amitsur’s results ([1]). Moreover, the computation of the volume Vol(O) reduces to
a computation of

√
d(O/Z), since the Z-discriminant d(O/Z) can be defined as the ideal generated

by {det(trA/Q xixj)1≤i,j≤[A:Q]} for xi ∈ O a Z-basis.

Example 1. When n = 1, by considering cyclotomic fields Q(ζm) Moustrou thus finds via a version
of Theorem 8, effective dense lattices in dimensions 2φ(m) for large enough m and shows a suitable
q can be found in time O(m3 log(m))φ(m), see [19, Theorem 1, Prop 3.1].

Proof. (of Proposition 2) From [1], we know that the construction Ak =
(

−1,−1
Q(ζmk

)

)
yields a

division algebra since ordm 2 is odd.
From discriminant calculations, we obtain that the first condition amounts to

(mkφ(mk)
2)2φ(mk) = o(q).

Using an effective version of the Čebotarev density theorem (see e.g., [25]), in at most around
e3/4n logn steps, one can find a prime p that split completely in Q(ζmk

) and∣∣∣∣ |M2(Fp)|2

|M2(Fp)|2 − |M2(Fp) \GL2(Fp)|2
− 1

∣∣∣∣ = o(e−nk),

which deals with the second condition of Theorem 8. The time estimate for enumerating the lattice
family is then of e4.5·nk log(nk)(1+o(1)) binary operations since the number of codes we consider in
Theorem 8 here amounts to O(p6). The costs of the remaining computations, such as computing
the packing density of lattices, are also exponential in the dimension, but being of cost 2O(nk) do
not contribute to the main term of the estimate.

5.2 Varying the rank t

Finally, we remark that one also obtains effective good asymptotic lattices from our constructions
by fixing the division ring A and maximal order O and instead varying the rank of the O-lattices as
in Vance’s construction [26]. In particular, one obtains an effective version of Vance’s construction
which we record here. The general case is handled in the same way and is left to the reader.

Proposition 9. For any 0 < ε < 1, there exists a lattice in Ht which is a free rank t module over
the ring of Hurwitz integers H, whose geometric mean of the quaternionic minima satisfy

t∏
j=1

min
j

(Λ)1/t > r

where r is defined by Vol(B(r)) = (1− ε) 24tVol(Ht)·
e(1−e−t) , and which, provided the odd prime p satisfies

t2 = o(p) and t is large enough, lies in the set of (rescaled) lifts

Lp = {p
1−t
2t ϕ−1

p (C) : C ∈ Ct+1},

where ϕp : Ht → (H/pH)t ∼= M2(Fp)
t is the reduction map and Ct+1 is the set of left M2(Fp)-

submodules of M2(Fp)
t isomorphic to t+ 1 copies of the simple left module F2

p.
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Proof. Consider the proof of Theorem 1. Then for any t ≥ 2 the support of the radial function
fr(y) is contained in the ball of radius re1/mn2t = re1/4t. Choose r such that

Vol(B(r)) = (1− ε)
24tVol(Ht)·
e(1− e−t)

(5.3)

First consider any t < k < 2t. Pulling back codes of Fp-dimension 2k as in Theorem 5, in order
to lift the averaging result we see that the support of f has to be contained in the ball of radius
2p1/4, so that we arrive at the condition

e(1+ln(t)−2t)/(4t) · 2
−3/8

√
π

√
t < p1/4.

Thus for t ≥ 2 it in particular suffices to take p ≥ t2. Note that here any odd prime p is unramified
and can be used in the construction. Inspecting the proof of Theorem 5, we have that

E ≤ pd(k)

|Up| · β4t
p

·
∑

x∈Ot\{0}

β4t
p fr(βpi(x)) =

p4t

p4t − (p3 + p2 − p)t
·
∑

x∈Ot\{0}

β4t
p fr(βpi(x))

as βp = pk/2t−1, and it therefore remains to bound the difference

∆(p, t) =

∣∣∣∣∣∣β4t
p ·

∑
x∈Ot\{0}

fr(βpi(x))− V −1

∫
R4t

fr(x)dx

∣∣∣∣∣∣ . (5.4)

We note that in particular fr has derivative bounded by Cr = e1/4/r. Tiling the support of fr
by Voronöı cells of diameter the packing radius τ(βOt), we can bound the error in approximating
the Riemann integral via the lattice sum on each individual cell by Vol(Ot)β4t

p ·Cr · 2τ(βOt). For

large enough p, t, we may estimate that the support of fr is covered by ∼ β−4te · V ol(B(r))
Vol(Ot) cells, so

that we arrive at the total error estimate

∆(p, t) ≲ 2eCr · βp
Vol(B(r))
Vol(Ot)

·
√
t · τ(O) (5.5)

We therefore obtain for r satisfying (5.3) the bound as p, t become large of

∆(p, t) = O(t) · p
k−2t
2t .

We see that in particular the condition t2 = o(p) suffices to guarantee for any given ε > 0 that
∆(p, t) < ε for large enough rank t. We have thus shown that for any ε we can find t large enough
so that under our assumptions on p there exists Λ ∈ Lp with

∑
y∈Λ′ fr(y) ≤ (1− ε) · 6. The result

now follows as in the proof of Theorem 1.

We therefore conclude:

Corollary 1. Given any 0 < ε < 1, for large enough t a lattice Λ̃ in dimension 4t whose packing
density satisfies

∆(Λ̃) ≥ (1− ε) · 24t

24t · e(1− e−t)

can be constructed with e4t
2 log(t)(1+o(1)) bit operations.
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