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Abstract. The Goppa Code Distinguishing (GD) problem asks to dis-
tinguish efficiently a generator matrix of a Goppa code from a randomly
drawn one. We revisit a distinguisher for alternant and Goppa codes
through a new approach, namely by studying the dimension of square
codes. We provide here a rigorous upper bound for the dimension of
the square of the dual of an alternant or Goppa code, while the previ-
ous approach only provided algebraic explanations based on heuristics.
Moreover, for Goppa codes, our proof extends to the non-binary case as
well, thus providing an algebraic explanation for the distinguisher which
was missing up to now. All the upper bounds are tight and match exper-
imental evidence. Our work also introduces new algebraic results about
products of trace codes in general and of dual of alternant and Goppa
codes in particular, clarifying their square code structure. This might be
of interest for cryptanalysis purposes.

1 Introduction

The McEliece scheme.

The McEliece encryption scheme [18], which dates back to 1978, is a code-based
cryptosystem built upon the family of binary Goppa codes. It is equipped with
very fast encryption and decryption algorithms and has very small ciphertexts.
It is also widely viewed as a viable quantum safe cryptosystem, since the best
quantum algorithm for breaking it [12] has exponential complexity and the corre-
sponding exponent barely improves the exponent of the best classical algorithm
[3] by about 40 percent. Classic McEliece [2] is currently the only code-based
finalist at the third round of the NIST Post-Quantum Cryptography Standard-
ization Process. This competition aims to replace classical public-key cryptog-
raphy with quantum-secure alternatives and NIST has expressed the opinion
that Classic McEliece could be ready for standardization at the end of the third
round.

Over the years, the attempts to attack McEliece scheme moved in two main
directions. One hand, we have message-recovery attacks. They consist in invert-
ing the McEliece encryption without finding a trapdoor and make use of gen-
eral decoding algorithms. Despite considerable improvements [22,4,16,1,17,3], all



these algorithms have exponential complexity. The parameters of McEliece-like
schemes have then been intentionally chosen to thwart this attack, which is con-
sidered as the main threat to the scheme. Despite all these efforts, the original
McEliece cryptosystem [18] based on binary Goppa codes remains, after more
than forty years, unbroken, be it by a classical or a quantum computer. It is now
the oldest public-key cryptosystem with this feature.

The other way to attack the cryptosystem is by seeking to recover the private
key. For a long time it was widely believed that even a simpler task which is just
to distinguish efficiently a generator matrix of a Goppa code from a randomly
drawn generator matrix with non negligible probability was unfeasible. This is
the so called Goppa Code Distinguishing (GD) problem as introduced in [6]. The
nice feature of this problem is that it is possible to devise a security proof for the
McEliece scheme based solely on the intractability of this problem and decoding
a generic linear code [21]. The belief about GD problem hardness was basically
justified by the fact that Goppa codes behave like random codes in many aspects.

A distinguisher for high rate.

However, this belief was severely questioned in [10,11] which gave a polynomial
time algorithm that distinguishes between Goppa codes (or more generally alter-
nant codes) and random ones from their generator matrices at least for very high
rate codes. It is based on the kernel of a linear system related to an algebraic
system encoding the key-recovery problem for McEliece cryptosystem. Indeed, it
was shown to have an unexpectedly high dimension. This distinguisher was later
on given another interpretation in [15], where it was proved that this dimension
is related to the dimension of the square of the dual of the public code.

The algebraic explanations given in [11] do not represent however a rigorous
proof of the dimension of the kernel sought, but they rely on heuristic consid-
erations. Indeed, while a set of vectors is proposed as candidate for the kernel
basis, its elements are neither proved to be independent nor a set of generators.
Moreover, in the case of Goppa codes, even if a general formula for the dimen-
sion of the kernel was provided which matches the experimental evidence, an
algebraic explanation was only provided in the case of binary Goppa codes with
square free Goppa polynomials. This explanation crucially relies on the fact that
binary Goppa codes are in this case also Goppa codes of a higher degree (with
a Goppa polynomial being the square of the original polynomial). Clearly, this
approach does not generalize to non binary Goppa codes.

Our contribution

In the present article, we revisit the distinguisher for random alternant codes
and Goppa codes. We do so by exploiting the link given by [15]. Indeed we
provide a rigorous upper bound on the dimension of the square code of the
dual of an alternant or a Goppa code that coincides with the experiments. By
using [15], this also gives a lower bound on the dimension of the kernel of the
matrix considered in [11]. Together with results about the typical dimension



of the square of random codes [5], this provides the first rigorous analysis of
the approach pioneered in [10], because the typical dimension of the square of a
random code is way larger than this upper-bound on the dimension of the square
of the dual of a Goppa or alternant code.

A distinguisher can sometimes be turned into an attack. In the code-based
cryptography setting, this is for instance the case for GRS codes. The uncommon
dimension of the square of a GRS code leads to a successful key-recovery for
several proposed variants of McEliece cryptosystem built upon this family of
codes for any rate [7]. Despite the strong relation between generalized Reed-
Solomon codes and alternant codes, the same attacks cannot be carried over from
the former to the latter, because of the additional subfield subcode structure.
A similar idea has been successfully exploited for Wild Goppa codes though [8].
But in this case, the distinguisher is based on considerations of square of Goppa
codes themselves, which only applies to a very restricted class of parameters.
Indeed the attack can only work for extensions of degree m = 2 and there is no
way to go beyond it, because for m > 2 the square code fills the whole space. In
our case, our distinguisher is based on squaring the dual of a Goppa code (or an
alternant code) and works for any field extension degree.

However, the fact that the dual of a Goppa code is the trace of a gener-
alized Reed-Solomon code rather than the subfield subcode of a generalized
Reed-Solomon code seems to complicate significantly the attempts to turn this
distinguisher into an attack. But again, having now a much better algebraic
(and rigorous) explanation of why the distinguisher works, together with new
algebraic results about products involved in the square of the dual of the Goppa
code gives a much better understanding of the square code structure. This is
clearly desirable and needed if we want to mount a key recovery attack based on
these square code considerations. The hope is that this will ultimately lead to
being able to attack McEliece schemes based on very high rate Goppa codes. As
explained earlier, this will still not threaten the codes used in the aforementioned
NIST competition, but this would break the 20 years old signature scheme [6]
that is based on very high rate Goppa codes.

2 Notation and prerequisites

In this section we fix notation used throughout the article. We also recall basic
definitions, component-wise products, square codes and some algebraic codes
derived from generalized Reed-Solomon codes.

Let F be a generic finite field, Fq and Fqm the finite fields with q and qm

elements respectively, where q denotes a prime power, andm is a positive integer.
Given v1, . . . , vk ∈ Fn, we denote with 〈 v1, . . . , vk 〉F the subspace of vectors in
Fn spanned by {v1, . . . , vk}. An [n, k]-code over F is a linear subspace of vectors
in Fn of dimension k. The positive integer n is called the code length.

We will also use for a function f acting on F and a vector x = (xi)16i6n in Fn
by f(x) the vector (f(xi))16i6n. A useful linear map from Fqm to its subfield Fq is
the trace operator TrFqm/Fq

from Fqm to Fq defined as TrFqm/Fq
(x) =

∑m−1
i=0 xq

i

.



The definition extends to vectors x ∈ Fnqm so that the trace acts component-wise
TrFqm/Fq

(x) = (TrFqm/Fq
(x1), . . . ,TrFqm/Fq

(xn)).

2.1 Reed-Solomon, alternant and Goppa codes

We first recall the definitions of some well-known classes of algebraic codes.

Definition 1. Let x = (x1, . . . , xn) ∈ Fn be a vector of pairwise distinct entries
and y = (y1, . . . , yn) ∈ Fn a vector of nonzero entries. The [n, r] generalized
Reed-Solomon (GRS) code with support x and multiplier y is

GRSr(x, y)
def
= {(y1P (x1), . . . , ynP (xn)) | P ∈ F[z],degP < r}.

The dual of a GRS code is also a GRS code, where the support and the
multiplier are related to the ones of the primal code.

Proposition 1. [14, Theorem 4, p. 304] The dual of a GRS code is a GRS code

GRSr(x, y)⊥ = GRSn−r(x, y⊥),

with y⊥ def
=
(

1
π′x(x1)y1

, . . . , 1
π′x(xn)yn

)
, and π′x is the derivative of πx

def
=
∏n
i=1(z −

xi).

An alternant code can be defined as the subfield subcode of a GRS code:

Definition 2. Let n ≤ qm, for some positive integer m. Let GRSr(x, y) be
the GRS code over Fqm of dimension r with support x ∈ Fnqm and multiplier
y ∈ (F∗qm)n. The alternant code with support x and multiplier y and degree r
over Fq is

Ar(x, y)
def
= GRSr(x, y)⊥ ∩ Fnq .

The integer m is called extension degree of the alternant code.

Note that from Delsarte’s theorem [9] and by duality,

Ar(x, y)
⊥ = Tr (GRSr(x, y)) . (1)

The dimension of an alternant code of order r built upon an extension field of
degree m has therefore dimension at least n − rm. There exists a subclass of
alternant codes which is particularly attractive for cryptographic purposes:

Definition 3. Let x ∈ Fnqm be a support vector and Γ ∈ Fqm [z] a polynomial of
degree r such that Γ (xi) 6= 0 for all i ∈ {1, . . . , n}. The Goppa code of degree
r, support x and Goppa polynomial Γ is defined as G (x, Γ )

def
= Ar(x, y), where

y
def
=
(

1
Γ (x1)

, . . . , 1
Γ (xn)

)
.



Square of codes

GRS codes turn out to display a very peculiar property with respect to the
component-wise/Schur product of codes which is defined from the component-
wise/Schur product of vectors a ? b def

= (a1b1, . . . , anbn) by

Definition 4. The component-wise product of codes C ,D over F with the same
length n is defined as C ? D

def
= 〈 c ? d | c ∈ C , d ∈ D 〉F. If C = D , we call

C ?2 def
= C ? C the square code of C .

It is easy to verify the following folklore result (see for instance [5])

Proposition 2. Let C be a linear code over F of dimension k and length n.
Then dimFq

C ?2 ≤ min
(
n,
(
k+1
2

))
.

For a random linear code C whose square does not fill the full space, the
dimension of its square code is exactly

(
k+1
2

)
with high probability, where k is

the dimension of C . On the other hand GRS codes behave very differently (and
can therefore be distinguished from random codes by this tool) as shown by

Proposition 3. Let GRSk(x, y) be a GRS code with support x, multiplier y and
dimension k. We have GRSk(x, y)?2 = GRS2k−1(x, y

2). Hence, if k ≤ n+1
2 ,

dimFqm
(GRSk(x, y))?2 = 2k − 1.

Note that the square code dimension is here 2k − 1, i.e. it is linear in k and not
quadratic. Since the dual of a Reed-Solomon code is again a Reed-Solomon code,
it turns out that this algebraic class is distinguishable for any rate. For other
families, a square code-based distinguisher may occur only for certain rates. For
instance Goppa codes (and more in general alternant codes) are distinguishable
whenever the rate is high enough as we will now recall. Again this is related to
such square code considerations as we will now explain.

The distinguisher of Goppa/alternant codes of [10,11] and its
relationship with square code considerations

The dual of an alternant (or Goppa) code can also be distinguished from random
codes when the primal code has a high enough rate, using the square code
tool. The different behavior was already observed in [10]. Here however, the
distinguisher was presented in terms of the kernel dimension D of a linear system
obtained by linearizing in the proper way the algebraic system that encodes
the key-recovery problem for McEliece cryptosystem endowed with alternant or
Goppa codes. Indeed let P = (pij)i,j be a generator matrix of an [n, k] alternant
(or Goppa) code C in systematic form, i.e. with its first k columns that form an
identity block and consider the following linear system

Lp =

 ∑
k+1≤j<j′≤n

pijpij′Zjj′ = 0 | 1 ≤ i ≤ k

 .



The dimension D of the solution space of this system turns out to be much
smaller in the case of high rate Goppa or alternant codes than for random codes.
A formula for D coinciding with experimental evidence was given in [11] together
with a convincing algebraic explanation for alternant and binary Goppa codes.

It has been proved in [15] that such D is related to the dimension of the
square of the dual code C⊥. Indeed, from [15, Proposition 1],

dimF
(
C⊥
)?2

=

(
dimF(C⊥) + 1

2

)
−D. (2)

The formula for D given in [11] predicts with (2) for a generic alternant code Fq
of length n and extension degree m that

dimFq
(Ar(x, y)

⊥)?2 = min

{
n,

(
rm+ 1

2

)
− m

2
(r − 1)

(
(2eA + 1)r − 2

qeA − 1

q − 1

)}
,

(3)
whereas for a generic Goppa code G (x, Γ ) of length n over Fq with Goppa
polynomial Γ (X) ∈ Fqm [X] of degree r:

dim(G (x, Γ )⊥)?2 = min

{
n,

(
rm+ 1

2

)
− m

2
(r − 1)(r − 2)

}
, if r < q − 1 (4)

dim(G (x, Γ )⊥)?2 = min

{
n,

(
rm+ 1

2

)
− m

2
r
(
(2eG + 1)r − 2(q − 1)qeG−1 − 1

)}
, otherwise,

(5)

where eA and eG are respectively defined by

eA
def
= max{i ∈ N | r ≥ qi + 1} =

⌊
logq(r − 1)

⌋
eG

def
= min{i ∈ N | r ≤ (q − 1)2qi}+ 1 =

⌈
logq

(
r

(q − 1)2

)⌉
+ 1.

As shown in [11], these formulas agree with extensive experimental evidence.

3 Our results

Note: Full proofs are given in the full version of the paper [19].

3.1 A general result about square of trace codes

Part of our results about the abnormally small dimension of the square of the
dual of alternant or Goppa codes will use a general result about square of trace
codes (recall that the dual of an alternant code is the trace of a GRS code). For
this we will use (and prove)



Proposition 4. Let C and D be two linear codes over Fqm with the same length

n. Then Tr(C ) ? Tr(D) ⊆
∑m−1
i=0 Tr

(
C ?Dqi

)
, where Dqi def

= {dqi | d ∈ D}.
When C = D this can be refined to give

Tr
(
C ? C qu

)
= Tr

(
C ? C qm−u

)
(6)

(Tr(C ))
?2 ⊆

bm/2c∑
u=0

Tr
(
C ? C qu

)
(7)

dimFq

(
Tr
(
C ? C qm/2

))
6 m

(dimFqm
(C ))2

2
if m is even. (8)

From Proposition 3 we know that square codes of GRS codes have an abnormally
small dimension. A natural question is whether or not this implies that the
square of the trace of a GRS code has itself a small dimension. More generally,
this raises the following fundamental issue: if the dimension of a square code
C ?2 over Fqm is smaller than what we expect from a random code, namely that
dim

(
C ?2

)
<
(
dimC+1

2

)
(if
(
dimC+1

2

)
is smaller than the code length) then does

this property survive for the trace code:

dim (Tr(C ))
?2
<

(
dimTr(C ) + 1

2

)
?

This is related to open questions raised in [20, C.4]. This is indeed the case up
to some extent, due to the following proposition:

Proposition 5. Let C be an Fqm-linear code. We have

dimFq (Tr(C ))
?2 6 m · dimFqm

C ?2 +

(
m

2

)(
dimFqm

C
)2
. (9)

3.2 Alternant case with eA = 0 and Goppa case with eG = 0

It is straightforward to use Proposition 5 together with Proposition 3 to derive
an upper bound on the dimension of the square of the dual of an alternant or
Goppa code which is valid for all parameters and is tight when eA = 0 for
random alternant codes and when r < q − 1 for Goppa codes.

Theorem 1. Let Ar(x, y) be an alternant code over Fq. Then

dimFq

(
Ar(x, y)

⊥)?2 ≤ (rm+ 1

2

)
− m

2
(r − 1)(r − 2). (10)

Remark 1. Note that Ar(x, y)
⊥ is (typically) of dimension rm. Therefore the

term
(
rm+1

2

)
represents the dimension we expect from the square of a random

code of the same dimension (if
(
rm+1

2

)
is smaller than the codelength). Therefore

the term m
2 (r− 1)(r− 2) can be interpreted as the defect of the dimension when

compared to the random case.



3.3 Alternant case with eA > 0

In this case, there are new linear relationships arising for alternant codes (hence
also for Goppa codes) of high enough order r. More precisely, the threshold value
for which new relations are guaranteed is r ≥ q + 1, i.e. eA > 0. The reason we
have a refinement of the upper bound of Theorem 1 for values of r for which
eA > 0 is that now in Proposition 4 for C

def
= GRSr(x, y) (which is the relevant

quantity here since Tr(C ) = Ar(x, y)
⊥) we get terms of the form Tr

(
C ? C qu

)
which have a smaller dimension than the generic upper bound mr2. This is due
to the fact that these Tr

(
C ? C qu

)
will actually be duals of alternant codes for

small values of u as shown by the following lemma

Lemma 1. Let C
def
= GRSr(x, y) and f

def
= blogq(r)c. We have

Tr
(
C ? C qu

)
⊆ A(r−1)(1+qu)+1(x, y

1+qu)⊥ for all integers u > 0, (11)

Tr
(
C ? C qu

)
= A(r−1)(1+qu)+1(x, y

1+qu)⊥ for all u in {0, · · · , f}. (12)

From this, we readily derive that

Theorem 2. Let Ar(x, y) be an alternant code over Fq. Then

dimFq (Ar(x, y)
⊥)?2 ≤

(
rm+ 1

2

)
− m

2
(r − 1)

(
(2eA + 1)r − 2

qeA +1 − 1

q − 1

)
.

(13)

3.4 Goppa case with r ≥ q − 1

In the previous subsections, we used linear relationships within the individual
Tr
(
C ? C qu

)
subspaces, showing that they are spanned by less than r2m vectors

if r is large enough. We will see that the dimension of some Tr
(
C ? C qu

)
is

even smaller in the Goppa case with r ≥ q − 1 (see (15) below). Moreover,
they are no more disjoint, i.e. dimFq

(
Tr
(
C ? C qu

)
∩ Tr

(
C ? C qv

))
> 0 for some

0 ≤ u < v ≤ eG as shown by

Theorem 3. Let C
def
= GRSr(x, y), where yi = 1

Γ (xi)
and Γ is a polynomial of

degree r and f def
= blogq(r)c. Let us define for any positive integer v

Bv
def
= Ar(qv−qv−1+1)(x, y

qv+1)⊥, and B0
def
= A2r−1(x, y

2)⊥. (14)

Then

Tr
(
C ? C qv

)
⊆ Bv for all positive integers v, (15)

Tr
(
C ? C qu

)
= Bu for 0 6 u 6 f , (16)

Tr (C ? C ) ⊆ Tr (C ? C q) ⊆ · · · ⊆ Tr
(
C ? C qu

)
for 0 6 u 6 f . (17)



An easy corollary of this theorem is that

Corollary 1. Let G (x, Γ ) be a Goppa code of order r ≥ q − 1 over Fq. Then

dimFq
(G (x, Γ )⊥)?2 ≤

(
rm+ 1

2

)
− m

2
r
(
(2eG + 1)r − 2(q − 1)qeG−1 − 1

)
.

Remark 2. One might wonder how the quantity eG arises in the previous corol-
lary. Indeed, it does not appear in the previous lemmas. Actually Theorem 3 is
used to prove that for e in {0, · · · , bm/2c} we have

dimFq (G (x, Γ )⊥)?2 ≤
(
rm+ 1

2

)
− m

2
r
(
(2e)r − 2(q − 1)qe−1 − 1

)
.

The point is that the choice e = eG minimizes the upper-bound.

4 Conclusion

In this article we revisited the distinguisher for random alternant and Goppa
codes presented for the first time in [11] through a different approach, namely
using squares of codes. With this simple but powerful tool we were able (i)
to provide explicitly the linear relationships determining the distinguisher in
a more straightforward way, (ii) to rigorously prove a tight upper bound for
the dimension of the square of the dual of an alternant or Goppa code, while
[11] only provides an algebraic explanation which does not however represent
neither an upper or a lower bound. Our proof is also valid in the case of non-
binary Goppa case, for which the conjectured distinguisher is only demonstrated
experimentally in [11]. By doing this we got an unifying explanation for the
behavior of all Goppa codes, which does not make use of specific features of the
binary case. Finally, we illustrated an interesting property of the structure of the
square of the dual of any Goppa code, relating it to the dual of another alternant
code. This connection could be of help for a potential key-recovery attack.
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