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Abstract. We propose a new method of constructing q-ary propelinear
perfect codes. The approach utilizes permutations of the fixed length q-
ary vectors that arise from the automorphisms of the regular subgroups
of the affine group. For any prime q it is shown that the new class contains
an infinite series of q-ary propelinear perfect codes of varying ranks.
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1 Introduction

Propelinear codes were introduced by Rifà, Basart and Huguet in [15] and pro-
vide a general view on linear, additive (including Z4-linear codes) and other
classes of codes. There are instances where propelinear approach yields codes
with larger size than linear ones. In particular, this holds for Preparata codes,
and all known classes of these codes are shown to be propelinear [5], [3], [18].

Unlike binary codes, which are well-studied, there are rather few works de-
voted to q-ary propelinear codes, for q ≥ 3. We refer to [7], [2], [8], [1] for q-ary
perfect, MDS and generalized Hadamard propelinear codes.

In this work we propose a method of constructing q-ary perfect codes based on
the automorphisms of the regular subgroups of the general affine group GA(r, q)
and a Mollard construction [12]. For q = 2 this approach which uses particular
case of Solov’eva construction was the topic of study of works [10] and [11]. In
[10] the values for the ranks and the kernels of these codes were found. A criteria
for coordinate transitivity of resulting code in terms of double cosets of GL(r, 2)
was suggested in [11]. An infinite series of binary extended perfect codes were
constructed in [11] with automorphism groups acting transitively on the code
and transitively on the set of its neighbors. Codes with such exquisite algebraic
properties are known as neighbor-transitive [4].

Basic definitions are given in Section 2. In Section 3.1 the general Mollard
approach [12] is described in terms of work [16]. The construction involves per-
mutations of the vectors of Frq . In Section 3.2 we focus on the case when the
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permutations arise from the automorphisms of regular subgroups of GA(r, q)
and then the resulting perfect codes are propelinear. Section 4 is on ranks of the
codes from general Mollard construction, which could be described in terms of
such permutations of Frq. Sections 5 and 6 are devoted to obtaining propelinear
perfect codes of various ranks. The idea behind the last two Sections is a natural
iterative approach for regular subgroups of GA(r, q).

2 Definitions

The all-zeros and all-ones vectors of the vector space Fnq are denoted as 0, 1 and
their length will be clear from the context. The concatenation of vectors x and
y is denoted as x|y. For q-ary codes C and D we use the following notation:

C ×D = {(x|y) : x ∈ C, y ∈ D}.

A q-ary code of length n is called perfect if it has minimum distance 3 and
its size is qn

1+(q−1)n . The automorphism group Aut(Fnq ) of Fnq is defined as the

group of all isometries of Fnq , i.e. the automorphism group of the corresponding
Hamming graph H(n, q). The automorphism group Aut(C) of a code C is the
setwise stabilizer of C in Aut(Fnq ). A q-ary propelinear code (original definition
was given in [15]) is a q-ary code whose automorphism group contains a subgroup
acting regularly on the codewords of C. The rank of a q-ary code C is is the
dimension of its linear span over Fq. We denote the latter by < C >. The rank is
an important invariant for distinguishing inequivalence of codes. For a thorough
study of ternary perfect codes of length 13 we refer to [9], where a large class of
codes from construction [16] were classified, and the values of their ranks were
described. The ranks of q-ary perfect codes were studied in [14]. We note that
there are no results on ranks of propelinear perfect codes for q ≥ 3 and adress
their study in this paper.

The general affine group GA(r, q) is the group of all transformations (a,M),
where a ∈ Frq, M ∈ GL(r, q), acting on the column-vectors b ∈ Frq as follows:
(a,M)(b) = a+Mb, with respect to the composition:

(a,M)(b,M ′) = (a+Mb,MM ′). (1)

A subgroup of GA(r, q) is called regular if it acts regularly on the vectors of
Frqwith respect to the above defined action. Apart from the translation group
(Frq,+) there are many other regular subgroups of GA(r, q). In Example 1 of
this paper we consider a regular subgroup of GA(2, q) for a prime q, which is
isomorphic to (Frq,+) but not conjugate in GA(2, q).

3 The construction of q-ary propelinear perfect codes
from regular subgroups of GA(r, q)

3.1 Concatenation construction for q-ary perfect codes

The construction for propelinear perfect codes is based on more a general method
of Mollard [12]. We use the representation of this approach from work [16] by



Romanov. Let HC be a parity check matrix of q-ary Hamming code C of length
qr−1
q−1 , H ′ be a r × qr matrix whose columns are all q-ary vectors of length r.

A (r + 1) × qr−1
q−1 parity check matrix of q-ary Hamming code of length qr+1−1

q−1
could be taken in a block form: (

0 1
HC H ′

)
. (2)

For any column-vector a, a ∈ Frq we use the notation below for a coset Ca of the
code C:

Ca = {x : x ∈ F
qr−1
q−1
q , HCx

T = a}. (3)

We also denote by D the linear code with the following r + 1 × qr parity
check matrix:

HD =

(
1
H ′

)
. (4)

We index the positions of D with the columns of the parity check matrix HD

and the position has index a, where a is a column-vector of Frq, if

(
1
a

)
is the

corresponding column of HD. Denote by ea the vector of length qr−1
q−1 of weight

1 with one in the position indexed by vector a. For a ∈ Frq denote by Da the
coset D + e0 − ea. Note that for any a the coset Da fulfills overall parity check,

i.e. for any y ∈ Da we have
qr∑
i=1

yi = 0.

Theorem 1. [12][16] For any q ≥ 2 and any permutation τ of the vectors of Frq
the code

Sτ =
⋃
a∈Fr

q

Ca ×Dτ(a)

is a q-ary perfect code of length qr+1−1
q−1 .

Throughout the paper we assume that τ fixes the all-zero vector. We note that
the Hamming code with the parity check matrix (2) coincides with

⋃
a∈Fr

q

Ca×Da.

3.2 Concatenation construction for propelinear perfect codes from
the regular subgroups of GA(r, q)

Let G be a regular subgroup of the general affine group GA(r, q). Since G acts
regularly on Frq, for any a in Frq there is an element of G that sends the all-zero
vector 0 to a. We denote this element by ga. Since ga(0) = a we see that the
translation part of ga is a:

ga = (a,Ma) (5)

for some nonsingular matrix Ma. Thus the elements of any regular subgroup of
GA(r, q) are indexed by the vectors of Frq.



Let T be an automorphism of G. The permutation τ of the vectors of Frq
such that for any a ∈ Frq gτ(a) = T (ga), is called the permutation induced
by the automorphism T . As any automorphism fixes the neutral element, the
permutation τ induced by any automorphism fulfills the equality τ(0) = 0. The
following result was proved in [10] for q = 2. The ideas behind the proofs are
similar and we skip the proof due to the lack of space.

Theorem 2. Let τ be the permutation induced by an automorphism of a regular

subgroup of GA(r, q). Then Sτ is a q ary propelinear perfect code of length qr+1−1
q−1 .

4 The ranks of the codes obtained by concatenation
construction

Let τ be a permutation of the vectors of Frq that fixes 0. Since the positions
of the code D are indexed by the vectors of Frq, τ is also a permutation of
the positions of vectors of D. We define the defect of a permutation τ to be
dim(D)− dim(D ∩ τ(D)). We have the following equality

dim(D)− dim(D ∩ τ(D)) = rank

(
HD

τ(HD)

)
− dim(D⊥), (6)

where D⊥ is the dual code of D, i.e. the code whose generator matrix is the
parity check matrix HD for the code D.

Consider the code Sτ =
⋃
a∈Fr

q

Ca ×Dτ(a), described in Section 3.1. The main

result of this section is the expression for the rank of Sτ in terms of defect of τ ,
which is given by exhibiting an explicit basis of the linear span < Sτ >.

For any a ∈ Frq, we choose a representative of Ca which we denote by xa
throughout this section. By definition of the coset Ca, we have HC(xa)T = a.
The leader e0 − ea of the coset Da is denoted by ya and we have

HDy
T
a = −

(
0
a

)
.

In view of the considered numeration of cosets of C and D via the vectors of
Frq, we have the following natural correspondence for linear dependencies in the
coset spaces of C and D.

Proposition 1. Let τ be a permutation of Frq, fixing 0. For any elements αa ∈
Fq, a ∈ Frq we have the following∑

a∈Fr
q

αaxa ∈ C if and only if
∑
a∈Fr

q

αayτ(a) ∈ τ(D).

Proof. The permutation τ fixes 0 and acts on the positions of Frq that are
indexed by columns of HD, i.e. the vectors of Frq. Therefore we have:∑

a∈Fr
q

αayτ(a) =
∑
a∈Fr

q

αa(e0 − eτ(a)) =
∑
a∈Fr

q

αa(eτ(0) − eτ(a)) = τ(
∑
a∈Fr

q

αaya).



It remains to show that∑
a∈Fr

q

αaya ∈ D ⇔
∑
a∈Fr

q

αaxa ∈ C.

Because the syndrome of xa ∈ Ca is HCx
T
a = a, see (3), we have that∑

a∈Fr
q

αaxa ∈ C ⇔ HC(
∑
a∈Fr

q

αaxa)T =
∑
a∈Fr

q

αaa = 0. (7)

Since HD(ya)T = −
(

0
a

)
, we obtain that

∑
a∈Fr

q

αaya is in D if and only if

HD(
∑
a∈Fr

q

αaya)T = −
(

0∑
a∈Fr

q
αaa

)
= 0.

This, combined with (7), gives the required:∑
a∈Fr

q

αaxa ∈ C ⇔
∑
a∈Fr

q

αaa = 0⇔
∑
a∈Fr

q

αaya ∈ D.

�
In what follows we denote by z1 . . . , zdim(C) a basis of C, where dim(C) =

qr−1
q−1 −r and by v1 . . . , vl we denote the vectors that complete a basis of D∩τ(D)

to a basis of D. Note that here l = dim(D)− dim(D)∩ dim(τ(D)) is the defect
of the permutation τ .

We introduce three sets of vectors

B = {(xa|yτ(a)) : a ∈ Frq \ 0}, B′ = {(zi|0) : i ∈ {1, . . . , dim(C)}},

B′′ = {(0|vj) : j ∈ {1, . . . , l}}.

We see that

|B|+ |B′|+ |B′′| = (qr − 1) + (
qr − 1

q − 1
− r) + l =

qr+1 − 1

q − 1
− r − 1 + l. (8)

We will now show that B ∪B′ ∪B′′ is a basis of the linear span Sτ .

Lemma 1. The set B ∪B′ ∪B′′ is linearly independent.

Proof. Clearly the sets B ∪ B′ and B′′ are linearly independent. Suppose that
B ∪ B′ ∪ B′′ is linearly dependent and consider a nonzero vector of the space
< B ∪ B′ > ∩ < B′′ >. In view of B, B′ and B′′ introduced above, the vector
can be represented in two ways



∑
a∈Fr

q\0

αa(xa|yτ(a)) +
∑

i∈{1,...,dim(C)}

βi(zi|0) =
∑

j∈{1,...,l}

γj(0|vj)

for some αa, βi, γj ∈ Fq and for all i ∈ {1, . . . , dim(C)}, j ∈ {1, . . . , l}, a ∈ Frq.
Equivalently, we have two equalities:∑

a∈Fr
q\0

αaxa +
∑

i∈{1,...,dim(C)}

βizi = 0,

∑
a∈Fr

q\0

αayτ(a) =
∑

j∈{1,...,l}

γjvj .

Since zi’s are in C, the first of these equalities implies that∑
a∈Fr

q\0

αaxa ∈ C. (9)

By the choice of {vj}j∈{1,...,l} they complete a basis of D∩ τ(D) to a basis of
D. Therefore their nontrivial linear combination

∑
j∈{1,...,l}

γjvj is never in τ(D).

Then the second equality gives that∑
a∈Fr

q\0

αayτ(a) /∈ τ(D). (10)

Since (9) and (10) do not hold simultaneously by Proposition 1, we obtain a
contradiction.

�

Lemma 2. Any vector of B ∪B′ ∪B′′ is in Sτ and Sτ ⊆< B ∪B′ ∪B′′ >.

Proof. Any vector of B is (xa|yτ(a)) for some a ∈ Frq and therefore it is in
Sτ =

⋃
a∈Fr

q

Ca × Dτ(a), so B ⊂ Sτ . The set B′ is a basis C × 0, therefore it is

included in Sτ , whereas B′′ completes a basis of 0 × (τ(D) ∩ D) to a basis of
0 × D and therefore B′′ ⊂ C × D ⊂ Sτ . Since Sτ is the union of the cosets of
C × D with representatives (xa|yτ(a)), a ∈ Frq, the said above implies that it
remains to prove that 0× (τ(D) ∩D) is contained in the span of B ∪B′.

Given a vector (0|w), w ∈ τ(D) ∩D we will show that it is the sum of two
vectors from < B > and < B′ >. Recall that the parity check matrix HD of D
has an all-ones row, see (4). So, the code D, as well as τ(D), are subcodes of the
supercode with the parity check matrix (1, . . . , 1). It is not hard to see that the
vectors yτ(a) = e0 − eτ(a), for all a ∈ Frq \ 0 form a basis of the supercode. We
consider a basis decomposition of w ∈ τ(D) ∩D on yτ(a)’s:

w =
∑

a∈Fr
q\0

αayτ(a), (11)



for some αa ∈ Fq, a ∈ Frq.
Take the vector

∑
a∈Fr

q\0
αa(xa|yτ(a)), w ∈ τ(D) ∩ D in < B >, which is the

linear combination of the vectors (xa|yτ(a)), a ∈ Frq\0 from B with the coeffcients
αa’s. From the equality (11) we see that the right side of this vector is w:∑

a∈Fr
q\0

(αaxa|αayτ(a)) = (
∑

a∈Fr
q\0

αaxa|w) ∈< B > . (12)

By the choice of the vector w, it is in τ(D). Because w =
∑

a∈Fr
q\0

αayτ(a), by

Proposition 1 the vector
∑

a∈Fr
q\0

αaxa is in C. Because B′ is a basis of C × 0 we

have that ∑
a∈Fr

q\0

(αaxa|0) ∈< B′ > .

This, combined with (12), gives that (0|w) is in < B ∪ B′ >. We conclude
that C ×D and Sτ is a subset of the span of B ∪B′ ∪B′′.

�
From Lemmas 1 and 2 and equality (8) we obtain the following.

Theorem 3. Let τ be a permutation of the vectors of Frq with defect l such that

τ(0) = 0. Then the rank of Sτ of length qr+1−1
q−1 is equal to qr+1−1

q−1 − r − 1 + l.

5 The defect of the iteration of permutations

Let τ1 and τ2 be permutations of Fr1q and Fr2q respectively, τ1(0) = 0, τ2(0) = 0.
We represent any column-vector of Fr1+r2q as a concatenation (ab ) of some column-
vectors a ∈ Fr1q and b ∈ Fr2q . The iteration of permutations τ1 and τ2, denoted
τ1|τ2 acts on the vectors of Fr1+r2q as follows:

(τ1|τ2)(ab ) = (
τ1(a)
τ2(b)

), for all a ∈ Fr1q , b ∈ Fr2q . (13)

We show that the iterations of permutations that are induced by automorphi-
sms of regular subgroups of GA(r1, q) and GA(r2, q) is a permutation induced by
an automorphism of a certain regular subgroup of GA(r1 +r2, q). Let G1 and G2

be regular subgroups of GA(r1, q) and GA(r2, q). For elements (a,M) ∈ G1 and
(b,M ′) ∈ G2 consider the following affine transformation from GA(r1 + r2, q)
which we denote by (a,M1)⊗ (b,M2):

((ab ),

(
M1 0
0 M2

)
).

It is not hard to see that the direct product {(a,M1) ⊗ (b,M2) : (a,M1) ∈
G1, (b,M2) ∈ G2} of the groupsG1 andG2 is a regular subgroup ofGA(r1+r2, q),
see e.g. [13][Section 6]. Denote this group by G1 ⊗G2.



Let T1 and T2 be automorphisms of the groups G1 and G2 with induced
permutations τ1 and τ2 respectively. We define the permutation T1 ⊗ T2 on the
elements of G1⊗G2 as follows: (T1⊗T2)(g1⊗g2) = T1(g1)⊗T2(g2). It is obvious
that T1 ⊗ T2 is an automorphism of the group G1 ⊗ G2 and the permutation
T1 ⊗ T2 of Fr1+r2q is τ1|τ2, defined earlier in (13). Thus we obtain the following.

Proposition 2. Let τ1 and τ2 be permutations of Fr1q and Fr2q induced by auto-
morphisms of regular subgroups of GA(r1, q) and GA(r2, q), q ≥ 2. Then τ1|τ2
is the permutation induced by an automorphism of the regular subgroup G1 G2

of GA(r1 + r2, q) and the code Sτ1|τ2 is propelinear.

We leave the following theorem without proof.

Theorem 4. Let τ1 and τ2 be permutations of Fr1q and Fr2q , q ≥ 2 with defects
l1 and l2, respectively, such that τ1(0) = 0, τ2(0) = 0. Then the defect of the
permutation τ1|τ2 is l1 + l2.

6 An infinite series of propelinear perfect codes with
different ranks

We start this section with an example.
Example 1. Let q be a prime, q ≥ 3. We will now construct a regular

subgroup of GA(2, q) isomorphic to Z2
q but not conjugate to the translation

group (F2
q,+) in GA(2, q). We then show that there is an automorphism of this

group with induced permutation of the vectors Frq having defect 2.
Consider the following affine transformations

g = ((10), Id), h = ((01),

(
1 2
0 1

)
).

It is not hard to see that g and h commute. Moreover, the following holds:

gihj = ((i0), Id)((
j(j−1)
j ),

(
1 2j
0 1

)
) = ((

i+j(j−1)
j ),

(
1 2j
0 1

)
). (14)

For distinct pairs (i, j) and (i′, j′) the vectors (
i+j(j−1)
j ) and (

i′+j′(j′−1)
j′ ) are

different. Therefore the group spanned by g and h is a regular subgroup of
GA(2, q), isomorphic to Z2

q . Consider the permutation T of the elements of the
subgroup spanned by g and h defined as follows:

T (gihj) = gjhi

for all i, j ∈ {0, . . . , q − 1}. Since the g and h commute, the involution T is
an automorphism of the group spanned by g and h. By definition, the induced
permutation τ of the automorphism T is such that τ(a) = b if T ((a,M)) =
(b,M ′) where (a,M) and (b,M ′) are elements of the considered regular subgroup.
From (14) we have

gihj = ((
i+j(j−1)
j ),

(
1 2j
0 1

)
)



and because g and h commute, we obtain

higj = ((
j+i(i−1)
i ),

(
1 2i
0 1

)
)

for all i, j ∈ {0, . . . , q − 1} and therefore we have

τ(
i+j(j−1)
j )) = (

j+i(i−1)
i ).

In particular if pairs (i, j) are equal to (1, 0), (0, 1), (−1,−2) and (0, 2), we obtain

τ(10) = (01), τ(01) = (10), τ(5−2) = (0−1), τ(22) = (20). (15)

Using (6) we find the defect of τ , i.e. rank

(
HD

τ(HD)

)
− dim(D⊥) =

rank

(
HD

τ(HD)

)
− 3. Since all-ones vectors are rows of both HD and τ(HD), we

have that

rank

(
HD

τ(HD)

)
= 1 + rank

(
0 a2 . . . aq

2

0 τ(a2) . . . τ(aq
2

)

)
,

where a2, . . . , aq
2

are nonzero vectors of F2
q. We take the first four nonzero ai’s

as follows:

a2 = (10), a3 = (01), a4 = (5−2), a5 = (22).

From (15) applying elementary transformations to the rows of the matrix we
see that

rank

(
0 a2 . . . aq

2

0 τ(a2) . . . τ(aq
2

)

)
= rank


1 0 5 2 . . .
0 1 −2 2 . . .
0 1 0 2 . . .
1 0 −1 0 . . .

 = rank


1 0 5 2 . . .
0 1 −2 2 . . .
0 0 2 0 . . .
0 0 6 2 . . .

 =

= 4

and conclude that τ is of defect 2.

Theorem 5. For all prime q, q ≥ 3, r ≥ 2 and i ∈ {0, . . . , br/2c} there is a

propelinear q-ary perfect code Sτ of length qr+1−1
q−1 and rank qr+1−1

q−1 − r− 1 + 2i.

Proof. Let τ be an induced permutation of F2
q with defect 2 from Example 1.

The permutation τ | . . . |τ |id| . . . |id of Frq, where τ is taken i times, and identity
is taken r − 2i times. From Proposition 2 the code Sτ |...|τ |id|...|id is propelinear.
In view of Theorem 4 the defect of τ | . . . |τ |id| . . . |id is 2i, so from Theorem 3 we
obtain the desired value for rank.

�
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