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Abstract. In this paper we propose the first efficient quantum version
of key-recovery attacks based on impossible differentials, which was left
as an open problem in previous work. These attacks work in two phases:
first, a number of differential pairs are collected, and second: these pairs
are filtered with respect to partial key candidates. In particular, we show
how to translate the pair filtering step into a quantum procedure. We
provide two applications on SKINNY-128-256 and AES-192/256. These
results do not threaten the security of these ciphers but allow us to better
understand the post-quantum security margin of these primitives.
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1 Introduction

During the last few years, the interest of the community in understanding the
resistance of symmetric primitives to quantum adversaries has considerably in-
creased. Some authors have proposed quantized versions of classical attacks
like [20,6] as well as new quantum dedicated attacks [3,5,19,4].

In [7] the authors performed a quantum security analysis of AES. Though
none of the proposed quantum attacks reach more rounds than the classical
ones, this is because they are compared to an exhaustive search of the key using
Grover’s algorithm [18], which provides a new generic bound in the quantum
setting. In a post-quantum world, the security might well be determined with
respect to this new bound, and these quantum attacks define the post-quantum
security margin of the primitives studied. This security margin needs to be stud-
ied with the same care as it was classically.

In [7] the authors studied generic ways for quantizing Square attacks [13,14,17]
and DS Meet-in-the-middle attacks [15,16] on AES-256, which gave the best
known attacks compared to Grover’s algorithm. Though classically, impossible
differential attacks also provide some trade-offs and comparable complexity, the
authors of [7] mention that they did not find a proper way to quantize them,
nor a “significant speed-up”.



Impossible differential attacks, introduced simultaneously by Knudsen [21]
and Biham, Biryukov and Shamir [2], exploit a differential transition that can-
not occur to build a distinguisher or to extract information on the secret key of
a cipher. Since [7], there has been no further study of quantum impossible differ-
ential attacks, except a proposal [27,26] to use quantum algorithms to efficiently
find impossible paths (but no actual speedup of the attack).
This paper. The results presented in this paper improve our knowledge in several
directions.

1. We propose the first efficient quantum impossible differential attacks with a
competitive speed up regarding classical attacks. An impossible differential
key-recovery attack runs in two phases: first, given black-box encryption and
decryption access, we build a set of pairs with some truncated input-output
difference pattern. Second, partial key candidates are sieved, by removing
those which, on some of the given pairs, would make the impossible differ-
ential appear. Our main contribution is an efficient quantum algorithm for
this pair filtering step.

2. We give some results on the applications of these attacks to the popular block
ciphers AES and SKINNY, summarized in Table 1 and compared to the best
existing post-quantum attacks (by this we imply attacks that are better than
Grover’s exhaustive key search). We also fill in the gap from [7] by proposing
the first quantum impossible differential attacks on AES-192/256.

Organization. We start in Section 2 by introducing (classical) impossible differ-
ential attacks. Section 3 recalls the algorithms that we can use for generating
the pairs while Section 4 describes the process of pair filtering.

2 Classical Impossible Differential Attacks

In this section, we provide a generic depiction of classical impossible attacks,
that will be helpful for translating them into quantum algorithms. We give a
generic formula for their complexity which is from [9].

2.1 Principle

The goal of this cryptanalysis technique is to recover some bits of the secret key
K of a black-box encryption oracle. This is done by discarding all the wrong key
guesses, with the help of a pair of plaintexts that leads to an impossible pattern
under its partial encryption with the wrong key guesses.

Let E be an n-bit block cipher with r rounds. We write E = Eout ◦ Eimp ◦
Ein, as on Figure 1, where Eout, Eimp and Ein have rout, rimp and rin rounds
respectively (r = rin + rimp + rout).

An impossible differential attack is based on an impossible differential of
maximal length, that is, a pair of differentials ∆X , ∆Y such that the probability
that ∆X propagates to ∆Y after rimp rounds in 0. We will then append rin and
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Table 1. Summary of best post-quantum attacks on SKINNY-128-256 and AES-
192/256 (with lower complexities than Grover’s search). Symbol * means we have
extrapolated the complexity on 21 rounds from the original attack on 24 rounds for
comparison, though it is still too expensive post-quantumly (the best classical one is the
24-round attack). For SKINNY-128-256 our results clearly provide the best quantum
attack and therefore the security margin. For AES-256, we obtain a better memory
than [16], and a time complexity comparable to [7]. Our best attack is dominated by
the cost of generating the pairs. ∗∗ indicates that the memory considered is quantum
memory with quantum random-access (otherwise, this is classical memory).

Algorithm # rounds Ref. Time Memory Data Setting
SKINNY-128-256 21 This paper 2112.7 (2103.17)∗∗ 2112.5 Q2

SKINNY-128-256 21 [25]* 2167.17 2103.17 2128 Classical
SKINNY-128-256 20 [25]* 2126.46 254.6 2126.46 Classical

AES-192 7 [7]-Grover 2105.6 neg neg Q1
AES-256 7 [7]-Grover 2137.3 neg neg Q1
AES-256 7 [7]-square 2121 238 237 Q1
AES-192 7 [7]-square 2103.4 238 + (227)∗∗ 237 Q1
AES-256 7 [7]-square 2107 238 + (227)∗∗ 237 Q1
AES-256 7 [16] 299 + 298 296 299 Classical

AES-192/256 7 This paper 2101.5 (278.5)∗∗ 299.8 Q2
AES-192/256 7 This paper 299.8 + 295.2 (278.5)∗∗ 299.8 Q2
AES-256 8 [7]-Grover 2138 neg neg Q1
AES-256 8 [7]-DS-MITM 2136 288 288 Q1

rout rounds of the cipher respectively before and after the impossible differential.
We name impossible pattern the tuple of quantities (∆X , ∆Y , rimp, rin, rout).

Next, we define two sets of differences Din and Dout such that ∆X maps
backwards to Din through Ein, and ∆Y maps forwards to Dout through Eout.
If we are given a pair of plaintexts with difference in Din, such that the output
difference falls in Dout, then due to the impossible pattern, we can discard any
key that satisfies:(

Ein(k)(x)⊕ Ein(k)(y) = ∆X) ∧ (E−1out(k)(E(x))⊕ E−1out(k)(E(y)) = ∆Y

)
.
(1)

The goal of the attack is to discard as many keys as possible using many
plaintext-ciphertext pairs.

In this paper, we adopt a representation inspired from [9]. The attack is a
two-steps procedure:

Pair Generation: In this part, we focus on solving the following problem:

Data: N ∈ N, E : {0, 1}n → {0, 1}n
Din ⊂ {0, 1}n , Dout ⊂ {0, 1}n

Question: Find N pairs (x, y) ∈ {0, 1}2n such that
x⊕ y ∈ Din and E(x)⊕ E(y) ∈ Dout
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Fig. 1. Impossible differential attack, with the notations used in this paper. The dif-
ferential ∆X ↔ ∆Y through the middle rounds Eimp is impossible.

This is a limited-birthday problem. A good analysis of it is given in [9], with
an efficient algorithm for solving it. At the end of this step, we will obtain
a set of N differential pairs. We will denote by T0 the table of such pairs
obtained.
Data Complexity. A probabilistic analysis allows us to estimate the value
of N and thus the data complexity. To filter out all the wrong subkeys, we
should have N = O(2cin+cout · | Kin ∪Kout |) where cin (resp. cout) denotes
the number of bit conditions required for a pair of plaintext (resp. ciphertext)
to propagate to the central part.
Time Complexity. We let ∆in and ∆out be such that |Din| = 2∆in and
|Dout| = 2∆out . The complexity of the Pair Generation problem was studied
in [9],

CN = max
(

min
∆∈{∆in,∆out}

√
N2n+1−∆, N2n+1−(∆in+∆out)

)
.

Pair Filtering: In this step, we assume given the table T0 of size N computed
above. The goal of this step is to split the set of subkeys Kin∪Kout into two
sets: one that contains all the subkeys that have been invalidated by some
pair of T0 and another that contains the other subkeys. A very interesting
optimization in this step is called the early abort technique. It was introduced
in [22] and is described in detail in [8].

To explain how the filtering is done, we will introduce test functions. Let us
assume that Kin∪Kout can be decomposed as: Kin∪Kout = K1×K2×· · ·×K`,
where K1, . . . , K` typically represent some bytes or bits of the subkeyspace.
Together with this decomposition, we will have ` test functions:

Ti : T0 ×K1 × . . .×Ki → {0, 1} .

This corresponds to taking some part of the subkey, some part of the pair,
and checking whether they meet some condition. Typically, we start from the
differences Din and Dout and compute partially the first and last rounds; the suc-
cessive Ti check that the partial encryption and decryption of the pair satisfies a
truncated differential pattern that ultimately leads to the impossible differential
(∆X , ∆Y ) at rounds rin and rout.
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Next, we define the set of pairs satisfying all the Ti:

T`(k) = {p ∈ T0 | ∀i, Ti(p, k1, . . . , ki) = 1} . (2)

Thus, the test functions are defined so that: T`(k) 6= ∅ if and only if, there
exist a given pair p ∈ T0 such that k makes the impossible differential appear for
p. The computation of T`(k) thus yields a probabilistic procedure that discards a
wrong subkey with some probability. We define the sequence σi so that the sizes
of the tables T0, . . . , T`−1 are N, σ1N, . . . , (

∏`−1
i=1 σi)N , therefore 0 < σi < 1. The

early abort technique consists in building sequentially the Ti(k1, · · · , ki) from
Ti−1(k1, · · · , ki−1) and guessing ki. Its complexity is:

|K1|

 N︸︷︷︸
Build T1

+|K2|

(
σ1N + |K3|

(
σ1σ2N + . . .+ |K`|

(
`−1∏
i=1

σi

)
N

))
= N

(
|K1|+ σ1|K1||K2|+ σ1σ2|K1||K2||K3|+ . . .+

`−1∏
i=1

σi
∏̀
i=1

|Ki|

)
(3)

Details can be found in [9].

3 Pair Generation: Quantum Limited Birthday Problem

For the pair generation problem, we use the formula given in [20] for the case
N = 1 (when there is a single pair to be found):

Q1 = O
(
max

(
2(n−∆out)/3, 2(n−∆out)/2−∆in/3

))
. (4)

We will then pay QN = N ·Q1 to recover N pairs. Depending on the parameters,
it may be more advantageous to resort to classical structures.

If both ∆out and ∆in are large, we can use another approach based on BHT
collision search [11], which gives an alternative complexity:O

(
N2

2(n−∆in−∆out)
3

)
.

4 Quantum Pair Filtering

In this section, we design a quantum version of the early-abort algorithm and
study its time complexity.

4.1 Preliminaries

We refer to [24] for a broad introduction to quantum computing and the quantum
circuit model. We will use below the ket notation of quantum states |·〉. When
studying a cipher E, our unit of computation will be an evaluation of E or of
E−1, either as a classical, or a quantum circuit. In general we use the qRAM
model, in which all qubits of a quantum circuit can be accessed in superposition
with cost 1.
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Quantum Search. We use quantum search to refer to Amplitude Amplifica-
tion [10], which generalizes Grover’s algorithm [18].

Theorem 1 (Theorem 2 in [10]). Let A be a quantum algorithm with no
input and without measurements. Assume that A’s outputs have a probability a
of being “good” (and that they can be easily tested). Assume that there exists a
quantum circuit for A running in time TA. Then there exists an algorithm that,
with no input, produces a good output. It runs in time: 2

⌊
π
4

1
arcsin

√
a

⌋
TA ≤ π

2
TA√
a

and succeeds with probability max (a, 1− a).

In practice, a is small and we do not lose much by upper bounding 1
arcsin

√
a
≤

1√
a
. Our main use of Amplitude Amplification in this paper is its Exact version

(Theorem 4 in [10]). If a is known exactly, then the probability of failure of the
procedure can be brought down to 0. The technique consists only in performing
a final partial iteration (also used in [12]), so the total time complexity can
be upper bounded by:

(
π

2
√
a
+ 2
)
TA ≤ π

2

(
1√
a
+ 2
)
TA. Below we omit the +2

factor (which remains negligible) to simplify the writing, but we note that the
obtained upper bounds are exact, and not asymptotic.

4.2 Assumptions on the Attack

The classical early abort enumerates all the key guesses for which there exists
no invalidating pair, using ` nested loops. The quantum version of this algo-
rithm uses ` Exact Amplitude Amplification subroutines. In order to ensure its
correctness, we first need to make some classical assumptions on the Impossible
Differential pattern and the initial set of pairs T0.

Assumption 1 Given the initial table T0, there exists a single key (k1, . . . , k`)
such that T`(k1, . . . , k`) = ∅.

Assumption 2 No intermediate table exceeds twice its expected size:

∀k1, . . . , ki, |Ti(k1, . . . , ki)| = N(k1, . . . , ki) ≤
( i∏
j=1

σj

)
N .

4.3 Filtering of a Table

We introduce additional notations to make precise time and memory complexity
estimates. Since we want to count the time complexity relatively to a cipher
evaluation, we introduce: • ti the time to evaluate the condition Ti; • t the time
to perform a 4n-bit register operation such as: swapping or copying a register that
contains a pair. We count the memory complexity in number of pairs (a pair can
be stored on a 4n-bit register). We denote by Mi = 2E (Ni) = 2

(∏
j≤i σj

)
N0

the maximal size of all intermediate tables Ti.
First of all, we compute the time to filter an intermediate table.
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Lemma 1. For all i, there exists a quantum circuit Fi that maps:

|Ti(k1, . . . , ki)〉 |ki+1〉 |0〉 7→ |Ti(k1, . . . , ki)〉 |ki+1〉 |Ti+1(k1, . . . , ki, ki+1)〉 |∗〉 ,

where ∗ are computation qubits that depend only on k1, . . . , ki, ki+1. The time
complexity, relative to a cipher evaluation, is bounded by:{

Mi(ti+1 + t) if qRAM is allowed
Mi(ti+1 +

(log2Mi)
2

4 t) otherwise
(5)

and the memory complexity by Mi or Mi
(log2Mi)

2

4 (mainly due to the ∗ state).

Here we are simply computing the filtering function for all elements of the
table. It should be noted that the |∗〉 is here to ensure reversibility of these
operations. We could perform uncomputations to erase it immediately, but we
prefer to wait until the table Ti+1(k1, . . . , ki, ki+1) is not needed anymore. Then
we will erase not only the table, but also all of the computations that led to it.

4.4 Exact Pair Filtering

Lemma 2. Let 1 ≤ i ≤ `. Let ti be the time (in quantum operations) to compute
the condition Ti.

There exists a quantum circuit (unitary) Ui that, on an input state of the
form

|k1, . . . , ki〉 |Ti−1(k1, . . . , ki−1)〉 ,

flips the phase (multiplies it by −1) iff there exists a completion ki+1, . . . , k` such
that k1, . . . , k` is the good key. It runs in time:

2
∑̀
j=i

Mj−1(tj + t)
(π
2

)j−i√√√√ j∏
m=i

|Km| , using a memory Mi−1.

This is proven recursively, starting from the final unitary U`, up to U1. Each
time, we add a new level of quantum search. We use Exact Amplitude Amplifi-
cation all the time, because we are ensured (by our assumptions) that exactly a
single key must survive all the filters (thus there is no need for handling errors,
which would usually happen with quantum searches). Then, using U1 in a quan-
tum search for k1, where we start from the table T0, we obtain our complete pair
filtering algorithm.

Corollary 1. Under our assumptions, there exists a quantum pair filtering al-
gorithm that finds the single good k1, . . . , k` in time:

2N
∑̀
j=1

(tj + t)

(
j−1∏
m=1

σm

)(π
2

)j√√√√ j∏
m=1

|Km| ,

and using little more than N memory.
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A more in depth approach on the quantum memory follows.Since the memory
required at step i is Mi, the total memory will be

∑
i

Mi =
∑
i

2

∏
j≤i

σj

N0 ≤ 2
∑
i

max(σ)iN0 ≤ 2
1−maxσl+1

1−maxσ
N .

If we focus on N , the σi and the |Ki|, we can simplify this formula as follows:

N

(√
|K1|+ σ1

√
|K1||K2|+ σ1σ2

√
|K1||K2||K3|+ . . .+

`−1∏
i=1

σi

√√√√∏̀
i=1

|Ki|

)

= |K1|
1
2

(
N + |K2|

1
2

(
σ1N + |K3|

1
2

(
σ1σ2N + . . .+ |K`|

1
2

(
`−1∏
i=1

σi

)
N

)))
(6)

Compared with the classical formula (Equation 3), it can be seen that we
have been able to put a square root on each |Ki|. In some cases, it can also be ad-
vantageous to use quantum search when constructing the table (this accelerates
the filtering).

5 Applications

SKINNY. SKINNY-128-256 is an SPN tweakable block cipher inspired by the
AES and introduced in [1]. Skinny relies on the tweakey framework, so the 128-
bit tweak and the 128-bit key are glued together in a 256-bit tweakey. The goal
of our cryptanalysis is to recover this 256-bit string.
Classical Attack. We obtained a classical impossible differential attack of Skinny
that achieves 21 rounds based on work from [25]. Since the goal is to recover the
full 256-bit tweakey, the generic bound is 2256. With our notation, the attack
is parameterized by ∆in = 32, ∆out = 72, cin = 24, cout = 72, N = 2103.17. N
is chosen so that a single subkey survives the filtering. The filtering procedure
itself has 12 successive steps of partial sub(twea)key guesses, with a complexity
2167.17.
Quantum Attack. Since 2 plaintext-ciphertext pairs are required to discriminate
the right tweakey, the exhaustive search with Grover’s algorithm has a complex-
ity of 2129.65 · tEnc where tEnc is the time required to perform an encryption.
Our quantum attack will be valid if we manage to outperform this.
Generation. By Equation 4, with the parameters ∆in = 32, ∆out = 72, cin = 24,
cout = 72, N = 2103.17, we need QN = 2112.5 encryptions to generate the pairs
(in the classical setting CN = 2128 encryptions).
Filtering. The quantum key recovery follows the same steps as the classical one,
and we use Corollary 1 to determine its complexity. Corollary 1 also features a
(t+ ti) term that carries the complexity of 4n-bit operations and the complexity
of performing the test Ti. One can assert (t + ti) < tEnc, we then obtain the
numbers reported in Table 2.
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Table 2. Time complexity of the different steps for 21-round SKINNY-128-256.

Complexity Quantum time Quantum mem. Classical time Classical mem.

Pair Generation 2112.5 224 2128 1
Pair Filtering 2110.5 2103.17 2167.17 2103.17

Total 2112.75 2103.17 2167.17 2103.17

Generic 2129.65 1 2256 1

AES. Our attack on 7-round AES is a quantum version of the attack of [23]. It
is built by appending two rounds before and one round after a 4-round impos-
sible differential. The parameters are N = 278.5, ∆in = 64, ∆out = 32. The pair
generation step requires quantum time 299.8. In the pair filtering step, we filter
with respect to 4 subkey spaces of 32 bits each. The filtering probabilities are
σ1 = 2−16, σ2 = 2−16, σ3 = 2−24. Using Corollary 1 we would obtain a complex-
ity 2101.5, comparable to previous works. However we improve this to 295.2 using
an improved pair filtering algorithm. Indeed, while Lemma 1 essentially applies
the test function on all pairs in the current table, it is possible to construct the
next table faster using Grover searches.
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