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Abstract. An almost perfect non-linear (APN) function over Fan is
called exceptional APN if it remains APN over infinitely many exten-
sions of Fan. Exceptional APN functions have attracted attention from
many researchers in the last decades. Although the classification of ex-
ceptional APN monomials was completed in 2011 by Hernando and
McGuire, there are only partial results on the classification of excep-
tional APN polynomials. In this note, we present new results on the
exceptional APN-ness of the polynomials of Gold and Kasami-Welch
type (i.e., polynomials of type f(X) = x4 > chzkj 1 and
F(x) = X272y 21 CjXQij —2% 41 respectively) by using tech-
niques from curves and their function fields.
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1 Introduction

Let Fan be the finite field of order 2™. Almost perfect non-linear (APN) functions
are of particular interest due to their good resistance to differential attacks, see
[10]. A function f :Fan — Fan is called APN over Fan if

Dof(X) = f(X +a)+ f(X)=b (1)

has at most 2 solutions for all a,b € Fan with a # 0. Note that if zq is a solution
of Dof(X) = b then so zg + a is, as the characteristic of Fon is 2. Hence, f
is APN over Fon if and only if Equation (1) has either 0 or 2 solutions for all
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a,b € Fan with a # 0. Equivalently, f is APN over Fao» if and only if for any
non-zero a € Fan the set {D,f(z) : = € Fan} has cardinality 2"~

Another characterization for APN-ness is given by the Janwa-Wilson-Rodier
condition. It states that a function f : Fon +— Fon is APN over Fon if and only
if all the elements (z,y, z) € F3, satisfying

f@)+ )+ fE)+ fle+y+2)=0

belong to the variety defined by (X +Y)(X + Z)(Y + Z) = 0.

Well-known examples of APN functions are the Gold function, i.e., f(X) =
X2k+1, and the Kasami-Welch function, i.e., f(X) = X2 =2"+1 More precisely,
f(X) is APN over Fa. if and only if ged(n, k) = 1. Therefore, the Gold and the
Kasami-Welch functions are APN over infinitely many extensions of Fan, and

are called exceptional APN over Fyn. The following conjecture is due to Aubry,
McGuire and Rodier, see [1].

Congecture 1. Up to CCZ equivalence (see [2]), the Gold and the Kasami-Welch
functions are the only exceptional APN functions. That is, if f(X) € Fon[X] is
exceptional APN then f(X) is CCZ equivalent to the Gold or the Kasami-Welch
function.

Let f(X) = Zj:o ¢j X7 € F2n[X] be a polynomial of degree d. Set

X+ M+ @)+ F(X+Y +2)

F(X,Y,Z):= X+YVX+2)(Y +2)

€Fan[X,Y, 2.  (2)

Note that F' is a polynomial of degree d — 3. Let F be the variety over Fan
defined by F'. Then by the Janwa-Wilson-Rodier condition we conclude that f
is not APN over Fa» if and only if there exits a rational point (z,y, z) € F with
pairwise distinct coordinates. In particular, if F has an absolutely irreducible
component defined over Fy» other than X +Y, X + Z and Y + Z then f can
not be exceptional APN over Fon, see [9]. Therefore, the main aim is to find an
absolutely irreducible factor over Fon of F' (other than X +Y, X+ Z and Y 4+ Z)
in Equation (2) in order to show that f is not exceptional APN over Fan.
By setting

XTI+ YIi+ ZI+(X+Y + 2)
X+ X+2)(Y+2)

Fi(X,Y,Z) = € Fun[X,Y, 7], 3)

we can write F(X,Y,Z) = 2?23 ¢;F;(X,Y, Z). With the notation mentioned

above, we can summarize some known results on Conjecture 1 for “odd degree”
polynomials f as follows. Throughout the paper, we mean the polynomial degree
as the degree of a polynomial.

Lemma 1. (i) If f(X) = X' is exceptional APN then f is either the Gold or
the Kasami-Welch function, see [7] and references therein. That is, Conjec-
ture 1 holds for monomial functions.
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(i) If the leading term of f is not the Gold or the Kasami-Welch then f is not
exceptional APN, see [1].
(#ii) Suppose that f(X) = X2+ + g(X) € Fon[X] for k > 2 and d = deg(g) <
2F + 1. Say, g(X) = Z?:o cj X7,
(a) If d < 271 41, and F; is absolutely irreducible for a non-zero c; then
f is not exceptional APN, see [1].
(b) If d=3 mod 4 then f is not exceptional APN, see [5].
(¢) If d =1 mod 4, and Fyr 1 and Fy are relatively prime then f is not
exceptional APN, see [5].
(d) If d =5 mod 8 then f is not exceptional APN, see [5].
(e) If d is an odd integer that is not of the form 2° 41 or that is of the form
2¢ + 1 with ged(k,£) = 1 then f is not exceptional APN, see [3,4].
(iv) Suppose that f(X) = X221 4 g(X) € Fou[X] for k > 2 and d =
deg(g) < 22F —2F + 1. Say, g(X) = E?:o c; X7,
(a) If d < 2%—1 —2k=1 4+ 1 and F} is absolutely irreducible for a non-zero
coefficient ¢; of g then f is not exceptional APN, see [6].
(b) Suppose thatd =3 mod 4. Ifd < 22F=12k=141 ord > 22F-1 2k-141
and gcd(2F — 1, (d — 1)/2) then f is not exceptional APN, see [3].

Remark 1. Note that F defines a surface in an affine space in the cases (i7) — (iv)
whereas it defines a curve in a projective plane in the case (). Moreover, in the
cases (i47) and (iv), the polynomial F'(X,Y, Z) is absolutely irreducible over Fon,
and F(X,Y, Z) is known to have an absolutely irreducible factor over Fan in (%)
and (i7).

For further results including even degree polynomials, we refer to [4] and refer-
ences therein.

This note is organized as follows. In Section 2, we describe the main method,
used to show a polynomial is not exceptional APN. In Section 3, we first apply
the method with Eisenstein’s irreducibility criterion to obtain new classes of
polynomials of Gold and Kasami-Welch type that are not exceptional APN,
see remarks 2 and 3. Then in Section 4 we apply the method with Kummer’s
theorem to characterize the non-exceptional APN property of Gold and Kasami-
Welch type polynomials f in terms of the existence of a root of the polynomial
associated to given f. Similarly, we obtain new classes of polynomials of Gold
and Kasami-Welch type that are not exceptional APN, see Corollary 2.

2 The main method

We can summarize the method used in the paper as follows.

Let f(X) = Z;l:o ¢; X7 € Fan[X] be a polynomial of degree d and F be the affine
surface defined by F(X,Y, Z) given by Equation (2). Consider the homogeniza-
tion of FI(X,Y, Z) by the variable T, i.e., F(X,Y, Z,T) = 2?23 ¢ Fj(X,Y, Z)T7,
where F}’s are defined as in Equation (3). Let F be the zero set of F(X,Y,Z,T)
in the projective space P3, i.e., F is the projective closure of F. The aim is to
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find an absolutely irreducible curve defined over Fon lying in F which does not
lie in the hyperplane defined by T (i.e., the hyperplane at infinity), X +Y, X+ 2
or Y+ Z. Then the Hasse-Weil bound (see [8, Theorem 9.57]) implies that there
exists a rational point (z :y : 2z : t) € F for all sufficiently large extensions of
Fon such that ¢t # 0, © # y, * # z and y # z. This implies the existence of
a rational point, namely (z/t,y/t,z/t), of F with pairwise distinct coordinates
over all sufficiently large extensions of Fan. Therefore, we conclude that f(X) is
not APN over all sufficiently large extensions of Fan, i.e., it is not exceptional
APN over Fon.

For the aim mentioned above, we consider the affine part Fof F correspond-
ing to variable Z. That is, we consider the zero set of

F(X,Y,T):= F(X,Y,1,T) = an Fi(X,Y,1)T97.

Let Y be the hyperplane defined by Y. Then the intersection FNY is defined
as the zero set of the following polynomial.

zd: X414 (X +1)
]

T4
X(X+1)

(4)

Proposition 1. If G(X,T) in Equation (4) has an absolutely irreducible factor
over Fon that has a term containing T then f(X) is not exceptional APN over
]FQn .

G(X,T):= F(X,0,T) ch F;(X,0,1)T%7 =

Proof. Let H(X,T) be an absolutely irreducible factor of G(X,T') defined over
Fyn that has a term containing T. Note that H(X,T) # T since G(X,0) =

cd% # 0. Moreover, H(X,T) can not be X or X + 1 as it has a
term containing T'. Let H be the curve defined by H(X,T). Since H(X,T) is
absolutely irreducible over Fon, by the Hasse-Weil bound, H has sufficiently large
number of rational points for all sufficiently large extensions of Fon. Hence, over
all sufficiently large extensions of Fan, there exists a rational point («, 3) € H
such that af # 0 and « # 1 since by Bezout’s Theorem X N {XT = 0} and
X N{X = 1} have cardinality at most 2deg(H) and deg(H), respectively. Then
(z,y,z) := (a/B,1/5,0) is a zero of F(X,Y, Z), given in Equation (2), such that
x #y, x # z and y # z, which gives the desired result by the Janwa-Wilson-
Rodier condition. [ ]

3 An approach by Eisenstein’s irreducibility criterion

In this section, we apply a special case of Eisenstein’s irreducibility criterion to
investigate the Gold and the Kasami-Welch type polynomials. Hence, we first
state the criterion in the following lemma. For details, we refer to [11, Proposition
3.1.15].
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Lemma 2. Let F be a field and G(X,T) € F[X,T]. Write
G(X,T) = Ga(X)T? + Ga1(X)T* " + -+ + G1(X)T + Go(X)

for some G;(X) € FIX]| fori=0,...,d. Set C(X) = ged(Gq(X),...,Go(X)).
For an irreducible polynomial P(X) € F[X], we denote the multiplicity of P(X)
in G;(X) by m;. Suppose that the following holds.

(i) mo > 0 and ged(mg,d) =1,
(i) m; > mg for alli=1,...,d—1, and
(iii) mg = 0.

Then G(X,T)/C(X) is absolutely irreducible over F.

3.1 Polynomials of Gold type

In this subsection, we apply Proposition 1 to the polynomials of the form f(X) =
X214 P chzkj‘H € Fan[X], which are Gold type polynomials. In [9], it
is shown that Fyr, (X, Y, 1) can be factorized as follows:

Fan(X,, )= J] X+(@+D)Y+a). (5)
OLG]sz-\]FQ

Lemma 3. For k > 2, let f(X) = X2 ™1 4 g(X), where g(X) = Z?; c; X7 e
Fon [X] with ¢, # 0. Suppose that there exists a € For \Fa such that Fj(«,0,1) =
0 for all j > € and Fp(,0,1) # 0. Then f(X) is not exceptional APN over Fon.

Proof. For f(X) = X2"+1 ¢ Z?ie ¢; X7, by Equation (4) we have

2k 41
Zc] Fj(X,0,1)T% 417,

That is, the coefficient of 7% in G(X,T) is Gi(X) = Far1_4(X,0,1) for i =
0,...,2F + 1 — ¢. Note that by Equation (5), we have Fyr,(X,0,1) =

HaEsz \r, (X + ). That is, the minimal polynomial P(X) of a over Fan is a
simple factor of Fyr | 1(X,0,1). The assumption F}j(c,0,1) = 0 implies that P(X)
is also a factor of F;(X,0,1) for all j > ¢, but it is not a factor of F;(X,0,1). In
other words, we have the following.

(i) P(X) is a simple factor of Go(X), i.e., mg = 1.
(ii) P(X) is a factor of G;(X), i.e., m; > myg, for all i = 1,...,2F — £.

(i) P(X) is not a factor of Gar 1 ¢(X), i.e., maor 1 o =0.

Hence by Lemma 2, G(X,T)/C(X) is absolutely irreducible over Fan. In par-
ticular, G(X,T) has an absolutely irreducible factor over Fon that has a term
containing 7', and hence we obtain the desired conclusion by Proposition 1. W
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Corollary 1. There are no exceptional APN binomials of Gold type. That is,
if f(X) = X2+ 4+ cX2H for a non-zero ¢ € Fan then f(X) is not exceptional
APN over Fon.

Proof. Let o € For \ For(#£ (), where Fot = For N Fy. Then o satisfies the
conditions in Lemma 3, and hence the result follows from Lemma 3. |
We can extend the previous result for Gold type polynomials that are not
binomials.
Theorem 1. Fork > 2, let f(X) = X2 +14¢(X), where g(X) = 11 chij'H €
Fon[X] for some positive integers ky < ko < --- < ky, < k and ¢; # 0 for
J=12,...n. If ged(ky,..., ky, k) < ged(ka, ..., ky, k) then f(X) is not excep-
tional APN over Fan.

Proof. Let ged(ky, ..., ky, k) = s and ged(ka, ..., ky,, k) = st for some integers
s> 1,t> 1. Then Fpst CFo; forall j =2,...,7, Fast € For and Fost NFor, =
Fy:. By Equations (4) and (5), we have the following equalities.

n
G(X,T) =" ¢jFy; , (X,0, )T 7 4 Fu iy (X,0,1)

Jj=1

=Yoo I &+a 2y I X+a) (6

a€]F2k]. \FQ QGF2k \]FQ

Let o € Faet \ Fas, ice., @ € For \ Fo. By Equation (6), we have F;(a,0,1) =0
for all j > 2¥1 +1 and Fyry 4 (,0,1) # 0. Then we obtain the desired result by
Lemma 3. |

Remark 2. Set d = deg(g(x)) = 2¥7+1. We observe that for a sufficiently integer
ky, we have d = 1 mod 4 and d # 5 mod 8. Also, ged(k,n) > 1 implies that
ged(2% +1,d) > 1, and hence we observe that Fyx,; and F, are not relatively
prime. In particular, Theorem 1 gives new classes of non-exceptional Gold type
polynomials, which can not be obtained from previously known characterization,
see Lemma 3.

3.2 Polynomials of Kasami-Welch type

In this subsection, we similarly apply Proposition 1 to the polynomials of the
form f(X) = X2 -2"+1 4 >l ch22k'j_2k'7+1 € Fon[X], which are Kasami-
Welch type polynomials. In [9], it is shown that Fher_or, ¢ (X,Y, 1) can be fac-
torized as follows:

Py (X, Y, 1) = [[ Pu(XY),
a€l,k \F2
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where P, (X,Y) is an absolutely irreducible polynomial over Fyr of degree 2% 4-1
such that for each o € Fox \ Fo

Pa(X,0) = (X +a)* 1. (7)
By using above factorization, we have the following result.

Theorem 2. For k > 2, let f(X) = X2"~2"+1 4 ¢(X), where g(X) =

;7:1 Csz%j —2+1 ¢ Fon [X] for some positive integers ki < --- < ky, < k and

c; #0 for j =1,...,n. Suppose that k is an even integer with ged(ki, k) =1
and ged(kq, ..., ky) > 1. Then f(X) is not exceptional APN over Fon.

Proof. 1t is sufficient to show that G(X,T) given in Equation (4) is absolutely
irreducible over Fon since the desired result then follows from Lemma 1. By
Equation (7), we can write G(X,T) as follows.

n
G(X,T) =3 ¢jFpn, gy (X,0,)TF 22425 4 o 01 (X,0,1)
j=1

n

ok 41 2k ok _o2ki | ok 9k

:E:cj H (X—i—a) + T2 2 2J+21+ H (X-i—()t) +
Jj=1 QE]F2kj \F2 €,k \F2

Note that G(X,T) is absolutely irreducible if and only if
H(X,T)=T12" 22" G(X 1/T) € Fau [X, T

is absolutely irreducible. Set A,(X) = HaeFﬂ \F, (X + a)2£+1. Then

H(X,T) = Ay(X)T2" -2 =202 Enj ¢j Ay, (X)TE" -2 -2t

Jj=1

Let ged(ky, ..., k) = s for some integer s > 1, 1i.e., Fos C Foi, foralli =1,...,7.
We have For, NFyr = Fo, since ged(ky, k) = 1, . Then « € Fas \ Fy is a root of
Ay, (X) of multiplicity 2% + 1 for all i = 1,...,n and Ag(a) # 0. That is, the
multiplicity of the minimal polynomial P(X) of a over Fan is 0 in Ax(X), and
it is 2% + 1 in Ay, (X), where 2% +1 > 2k 4 1 foralli=1,...,7. Set

m = ged(2%F — 28 — 22k 4 9k ok 4y,

We will show that m = 1 under the assumptions K = 0 mod 2 and ged(kq, k) =
1. Since 22kt — 2% =2 mod (2" + 1), we have the following equalities.

m = ged(22F — 28 — 2,9 4 1) = ged(22F71 — 281 — 1,28 4 1)
=ged(2F71 — 1,27 £ 1)ged(2F 41,25 + 1) = ged (2% + 1,25 4 1).
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Note that in the last equality we used the fact that

2gcd(k—1,2k1) -1
ged2F -1, 1) ="~ =1

2gcd(k—1,k1) —1
since ged(k —1,2k1) = ged(k — 1, k1), which follows from the assumption that &
is even. Moreover, we have

B gcd(22k o 1’ 22k1 o 1) _ 2gcd(2k,2k1) -1

= ped(@F 1,22 1) gsedteE) 1

ged(2F 41,220 — 1)

since ged(2k,2k1) = ged(k,2k1) = 2, which follows from the assumptions that
ged(ky, k) = 1 and k is even. Note that ged(2F + 1,2 + 1) is a divisor of
ged(2F +1,2%1 — 1), and hence we conclude that ged (2% 41,25 +1) = 1, which
implies that m = 1. Then we conclude that H(X,T) is absolutely irreducible by
Lemma 2, which gives the desired conclusion. |

Remark 3. Set d = deg(g) = 2% — 2% + 1. Then d < 2% — 2% + 1 and
d = 1 mod 4 for a sufficiently large integer k,. Moreover, by [9], we know
that Fiee; ox; , is not absolutely irreducible for all j = 1,...n. In particular,
Theorem 2 gives new classes of non-exceptional Kasami-Welch type polynomials,

which can not be obtained from previously known characterization, see Lemma
3.

4 An approach by Kummer’s theorem

In this section we use the theory of function fields to obtain more classes of
polynomials of Gold or Kasami-Welch type that are not exceptional APN. We
need a special case of Kummer’s theorem, see [11, Corollary 3.3.8] which we
summarize as follows:

Let F(x) be a rational function field over the constant field F and H,)(Y) =
Y™ + b1 ()Y L + -+ + ho(z) € F(z)[Y] be an irreducible polynomial over
F(x). Let ' = F(x,y) be the function field defined by H,)(y) = 0. We consider
the function field extension F(z,y)/F(x). Let v € F such that h;(vy) # oo, i.e., v
is not a pole of h;(x), for all j =0,...,n — 1. Denote by P, the rational place
of F(z) corresponding to & — «y. Suppose that

Hip)(Y) =Y + by (Y™ 4o 4 ho(7) € FIY]

has the following factorization in F[T7] :
Hey (V) =] wi(Y),
i=1

where 1;(Y')’s are irreducible, monic, pairwise distinct polynomials. Then there
are exactly r places P; of F' lying over P, such that the relative degree of P; over
P, is the degree of ;. In particular, if one of the 1); has degree 1, the residue
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field of P; and P, are the same, namely F. That is, I is the full constant field F'.
Then by [11, Corollary 3.6.8] we conclude that H(,)(Y’) is absolutely irreducible
over F(x).

Write h;(X) = k;(X)/4;(X) for some relatively prime polynomials k;(X), £;(X)
e F[X]. Set £(X) =lem(£,—1(X), ..., Lo(X)) and k(X) = ged(kp—1(X), ..., ko(X))
in F[X], where lem and ged are the least common multiple and greatest com-
mon divisor, respectively. Then the absolutely irreducibility of i, (Y") over F(x)
implies that H(X,Y) := £(X)hx)(Y)/k(X) € F[X,Y] is absolutely irreducible
over .

Now we apply the approach explained above to the following type of Kasami-
Welch polynomials.

Theorem 3. Let f(X) = X2 2414577 ¢, X2 =241 € Fou[X] with ¢; #
0 for j=1,...,n. If the polynomial F(T) = ;7:1 chz%*zk’szj +2% 4 1 has a
root o € Fon then f(X) is not exceptional APN over Fon.

Proof. We recall that if f(X) = X2 =214 577 ¢, X" =2Y+1 € Fyu [X] then
the polynomial G(X,T) in Equation (4) is given by

n
G()(7 T) = chAkj (X)T22k_2k_2 ki 2k + Ak(X),
j=1

where A,(X) = HaeFﬂ\Fz (X + a)zeﬂ. Then by Proposition 1, it is sufficient
to show that G(X,T) has an absolutely irreducible factor over Fon that has a
term containing 7. Set Y := T2"", then G(X,Y) := G(X,T) is given by

n
GN'(X7Y) = chAkj (X)Yg%—m _ok—h1 _g2k;j—k1 | ok;j—k1 n Ak(X)
j=1
Note that A;(1) =1 for any £ > 1, i.e.,

n
L) im G Y) = Syt
j=1

By our assumption, we have G(1,a) = 0 for some « € Fan. This implies that
L(B) = 0, where 8 = " The fact that the derivative L'(Yy)= I S
implies that L(Y) is a separable polynomial. That is, 8 is a simple root of
L(Y). Let H(X,Y) = hpy(X)Y™ + hy1(X)Y" L + -+ + ho(X) be an irre-
ducible factor of G(X,Y) such that H(1,Y) is divisible by Y + 3. Note that
deg G(X,Y) = deg L(Y), and hence deg H(X,Y) = deg H(1,Y). That is,
hn (1) # 0. Then for

haoy (V) =Y" + frua (@)Y -+ fo(a),

where f;(z) = hij(x)/hn(z) for ¢ = 0,...,n — 1, we have f;(1) # oo for all
i=0,...,n—1. Moreover, since L(Y’) is separable, h(;)(Y") factors into pairwise
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distinct irreducible factors such that one of them is Y + 3. That is, iy (Y)
satisfies the properties given above. Hence, h,(X)hx)(Y) = H(X,Y) is an
absolutely irreducible polynomial over Fon.

We now show that the absolute irreducibility of H(X,Y") implies the existence
of an absolute irreducibility factor of H(X, T2k1) over Fon which has a term
containing T'. Then we obtain the desired conclusion by Proposition 1.

Suppose that H (X, T2k1) = A(X,T)B(X,T) for some relatively prime poly-
nomials A, B € F(X)[T], where F is the algebraic closure of Fan. We without
loss of generality suppose that B(X,T) = P(X,T )522 for an absolutely irre-
ducible polynomial P € F[X,T], which has a term containing 7', and positive
odd integer s. Note that

AX, 1) = H(xX?",1%") = AX?, T)B(X*",T) 8)

for some H € Fan [X,T]. Since A(X,T), B(X,T) are relatively prime over F(X),
the polynomials A(X2",T), B(X2",T) are relatively prime over F'(X). Then
Equation (8) implies that B(XQM,T) = (B(X, T))Qk1 for some B € F[X,T].
This shows that the exponents of T in B(X, T) is divisible by 2*1i.e., B(X,T) =
B(X, Tzk) for some B € F[X,Y]. Similarly, A(X,T) = A(X, T2k) for some
A € F[X,Y]. This implies that H(X,Y) = A(X,Y)B(X,Y). Since H(X,Y) is
absolutely irreducible, H(X,Y) = B(X,Y), and hence H(X,T?"") = B(X,T) =
P(X,T)%, where P(X,T) = P(X, T)2Z = P(ng,TQE). Then it is enough to
observe that s = 1 to show P € Fan[X,Y]. For this, we show that the exponents
of T in P(X,T) are divisible by 2%, i.e., P(X,T) = P(X,T?") for some P €
F[X,Y]. This implies that H(X,Y) = B(X,Y) = P(X,Y)*, which gives the
desired conclusion s = 1. Let

P(X,T) = pou(X)T™ + prn 1 (X)T™ -+ 4+ 1 (X)T + po(X).

First note that po(X) # 0 as T is not a factor of G(X,T'). Denote the coefficient
of T in P(X,T)* by c,. Since B(X, T2k1) = P(X,T)*, we conclude that c,, # 0
only if p is divisible by 2¥. We proceed by induction on p,(X). Note that
c1 = p1(X)po(X)*~!t = 0 implies that p;(X) = 0. Then p;(X) = 0 implies
that co = po(X)po(X)*~t, and hence pa(X) = 0 if k; > 1. Then we conclude
that p(X) = 0 for all £ = 1,...,2" — 1 by induction. Suppose that for some
t > 1 we have that p,(X) =0 for all p < t2F1 if 4 is not divisible by 2F1. Then
0 = ¢ior1 40 = Prak140(X)po(X)*™1, and hence pygr, (X)) = 0, which gives the
desired conclusion. |

We apply the same approach to the polynomials of Gold type and obtain the
following result.

Theorem 4. Let f(X) = X2 + Y7 ¢; X% %1 € Fou[X] with ¢; # 0 for

j=1,...,n. If the polynomial F(T) = ;]:1 ch2k72kj + 1 € Fou[T] has a root
a € Fon then f(X) is not exceptional APN over Fon.
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Corollary 2. If f(X) = X2 =2"41 4 322 1 x 2% =24 41 o p(x) = X'+ 4
Z?:l X2+ then f(X) is not exceptional APN over Fo. In particular, by The-
orems 3 and 4 we obtain classes of non-exceptional Gold and Kasami- Welch type
polynomials for sufficiently large k, which can not be obtained from previously

known characterization given in Lemma 3, Theorems 1 and 2.
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