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Abstract. An almost perfect non-linear (APN) function over F2n is
called exceptional APN if it remains APN over infinitely many exten-
sions of F2n . Exceptional APN functions have attracted attention from
many researchers in the last decades. Although the classification of ex-
ceptional APN monomials was completed in 2011 by Hernando and
McGuire, there are only partial results on the classification of excep-
tional APN polynomials. In this note, we present new results on the
exceptional APN-ness of the polynomials of Gold and Kasami-Welch

type (i.e., polynomials of type f(X) = X2k+1 +
∑η
j=1 cjX

2
kj+1 and

f(X) = X22k−2k+1 +
∑η
j=1 cjX

2
2kj−2

kj+1, respectively) by using tech-
niques from curves and their function fields.
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1 Introduction

Let F2n be the finite field of order 2n. Almost perfect non-linear (APN) functions
are of particular interest due to their good resistance to differential attacks, see
[10]. A function f : F2n 7→ F2n is called APN over F2n if

Daf(X) := f(X + a) + f(X) = b (1)

has at most 2 solutions for all a, b ∈ F2n with a 6= 0. Note that if x0 is a solution
of Daf(X) = b then so x0 + a is, as the characteristic of F2n is 2. Hence, f
is APN over F2n if and only if Equation (1) has either 0 or 2 solutions for all
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a, b ∈ F2n with a 6= 0. Equivalently, f is APN over F2n if and only if for any
non-zero a ∈ F2n the set {Daf(x) : x ∈ F2n} has cardinality 2n−1.

Another characterization for APN-ness is given by the Janwa-Wilson-Rodier
condition. It states that a function f : F2n 7→ F2n is APN over F2n if and only
if all the elements (x, y, z) ∈ F3

2n satisfying

f(x) + f(y) + f(z) + f(x+ y + z) = 0

belong to the variety defined by (X + Y )(X + Z)(Y + Z) = 0.
Well-known examples of APN functions are the Gold function, i.e., f(X) =

X2k+1, and the Kasami-Welch function, i.e., f(X) = X22k−2k+1. More precisely,
f(X) is APN over F2n if and only if gcd(n, k) = 1. Therefore, the Gold and the
Kasami-Welch functions are APN over infinitely many extensions of F2n , and
are called exceptional APN over F2n . The following conjecture is due to Aubry,
McGuire and Rodier, see [1].

Conjecture 1. Up to CCZ equivalence (see [2]), the Gold and the Kasami-Welch
functions are the only exceptional APN functions. That is, if f(X) ∈ F2n [X] is
exceptional APN then f(X) is CCZ equivalent to the Gold or the Kasami-Welch
function.

Let f(X) =
∑d
j=0 cjX

j ∈ F2n [X] be a polynomial of degree d. Set

F (X,Y, Z) :=
f(X) + f(Y ) + f(Z) + f(X + Y + Z)

(X + Y )(X + Z)(Y + Z)
∈ F2n [X,Y, Z]. (2)

Note that F is a polynomial of degree d − 3. Let F be the variety over F2n

defined by F . Then by the Janwa-Wilson-Rodier condition we conclude that f
is not APN over F2n if and only if there exits a rational point (x, y, z) ∈ F with
pairwise distinct coordinates. In particular, if F has an absolutely irreducible
component defined over F2n other than X + Y , X + Z and Y + Z then f can
not be exceptional APN over F2n , see [9]. Therefore, the main aim is to find an
absolutely irreducible factor over F2n of F (other than X+Y , X+Z and Y +Z)
in Equation (2) in order to show that f is not exceptional APN over F2n .

By setting

Fj(X,Y, Z) :=
Xj + Y j + Zj + (X + Y + Z)j

(X + Y )(X + Z)(Y + Z)
∈ F2n [X,Y, Z], (3)

we can write F (X,Y, Z) =
∑d
j=3 cjFj(X,Y, Z). With the notation mentioned

above, we can summarize some known results on Conjecture 1 for “odd degree”
polynomials f as follows. Throughout the paper, we mean the polynomial degree
as the degree of a polynomial.

Lemma 1. (i) If f(X) = Xt is exceptional APN then f is either the Gold or
the Kasami-Welch function, see [7] and references therein. That is, Conjec-
ture 1 holds for monomial functions.
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(ii) If the leading term of f is not the Gold or the Kasami-Welch then f is not
exceptional APN, see [1].

(iii) Suppose that f(X) = X2k+1 + g(X) ∈ F2n [X] for k ≥ 2 and d = deg(g) <

2k + 1. Say, g(X) =
∑d
j=0 cjX

j.

(a) If d ≤ 2k−1 + 1, and Fj is absolutely irreducible for a non-zero cj then
f is not exceptional APN, see [1].

(b) If d ≡ 3 mod 4 then f is not exceptional APN, see [5].
(c) If d ≡ 1 mod 4, and F2k+1 and Fd are relatively prime then f is not

exceptional APN, see [5].
(d) If d ≡ 5 mod 8 then f is not exceptional APN, see [5].
(e) If d is an odd integer that is not of the form 2` + 1 or that is of the form

2` + 1 with gcd(k, `) = 1 then f is not exceptional APN, see [3,4].

(iv) Suppose that f(X) = X22k−2k+1 + g(X) ∈ F2n [X] for k ≥ 2 and d =

deg(g) < 22k − 2k + 1. Say, g(X) =
∑d
j=0 cjX

j.

(a) If d ≤ 22k−1 − 2k−1 + 1, and Fj is absolutely irreducible for a non-zero
coefficient cj of g then f is not exceptional APN, see [6].

(b) Suppose that d ≡ 3 mod 4. If d ≤ 22k−1−2k−1+1 or d > 22k−1−2k−1+1
and gcd(2k − 1, (d− 1)/2) then f is not exceptional APN, see [3].

Remark 1. Note that F defines a surface in an affine space in the cases (ii)−(iv)
whereas it defines a curve in a projective plane in the case (i). Moreover, in the
cases (iii) and (iv), the polynomial F (X,Y, Z) is absolutely irreducible over F2n ,
and F (X,Y, Z) is known to have an absolutely irreducible factor over F2n in (i)
and (ii).

For further results including even degree polynomials, we refer to [4] and refer-
ences therein.

This note is organized as follows. In Section 2, we describe the main method,
used to show a polynomial is not exceptional APN. In Section 3, we first apply
the method with Eisenstein’s irreducibility criterion to obtain new classes of
polynomials of Gold and Kasami-Welch type that are not exceptional APN,
see remarks 2 and 3. Then in Section 4 we apply the method with Kummer’s
theorem to characterize the non-exceptional APN property of Gold and Kasami-
Welch type polynomials f in terms of the existence of a root of the polynomial
associated to given f . Similarly, we obtain new classes of polynomials of Gold
and Kasami-Welch type that are not exceptional APN, see Corollary 2.

2 The main method

We can summarize the method used in the paper as follows.
Let f(X) =

∑d
j=0 cjX

j ∈ F2n [X] be a polynomial of degree d and F be the affine
surface defined by F (X,Y, Z) given by Equation (2). Consider the homogeniza-

tion of F (X,Y, Z) by the variable T , i.e., F (X,Y, Z, T ) =
∑d
j=3 cjFj(X,Y, Z)T d−j ,

where Fj ’s are defined as in Equation (3). Let F̄ be the zero set of F (X,Y, Z, T )
in the projective space P3, i.e., F̄ is the projective closure of F . The aim is to
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find an absolutely irreducible curve defined over F2n lying in F̄ which does not
lie in the hyperplane defined by T (i.e., the hyperplane at infinity), X+Y , X+Z
or Y +Z. Then the Hasse-Weil bound (see [8, Theorem 9.57]) implies that there
exists a rational point (x : y : z : t) ∈ F̄ for all sufficiently large extensions of
F2n such that t 6= 0, x 6= y, x 6= z and y 6= z. This implies the existence of
a rational point, namely (x/t, y/t, z/t), of F with pairwise distinct coordinates
over all sufficiently large extensions of F2n . Therefore, we conclude that f(X) is
not APN over all sufficiently large extensions of F2n , i.e., it is not exceptional
APN over F2n .

For the aim mentioned above, we consider the affine part F̃ of F̄ correspond-
ing to variable Z. That is, we consider the zero set of

F̃ (X,Y, T ) := F (X,Y, 1, T ) =

d∑
j=3

cjFj(X,Y, 1)T d−j .

Let Y be the hyperplane defined by Y . Then the intersection F̃ ∩ Y is defined
as the zero set of the following polynomial.

G(X,T ) := F̃ (X, 0, T ) =

d∑
j=3

cjFj(X, 0, 1)T d−j =

d∑
j=3

cj
Xj + 1 + (X + 1)j

X(X + 1)
T d−j

(4)

Proposition 1. If G(X,T ) in Equation (4) has an absolutely irreducible factor
over F2n that has a term containing T then f(X) is not exceptional APN over
F2n .

Proof. Let H(X,T ) be an absolutely irreducible factor of G(X,T ) defined over
F2n that has a term containing T . Note that H(X,T ) 6= T since G(X, 0) =

cd
Xd+1+(X+1)d

X(X+1) 6= 0. Moreover, H(X,T ) can not be X or X + 1 as it has a

term containing T . Let H be the curve defined by H(X,T ). Since H(X,T ) is
absolutely irreducible over F2n , by the Hasse-Weil bound,H has sufficiently large
number of rational points for all sufficiently large extensions of F2n . Hence, over
all sufficiently large extensions of F2n , there exists a rational point (α, β) ∈ H
such that αβ 6= 0 and α 6= 1 since by Bezout’s Theorem X ∩ {XT = 0} and
X ∩ {X = 1} have cardinality at most 2deg(H) and deg(H), respectively. Then
(x, y, z) := (α/β, 1/β, 0) is a zero of F (X,Y, Z), given in Equation (2), such that
x 6= y, x 6= z and y 6= z, which gives the desired result by the Janwa-Wilson-
Rodier condition. �

3 An approach by Eisenstein’s irreducibility criterion

In this section, we apply a special case of Eisenstein’s irreducibility criterion to
investigate the Gold and the Kasami-Welch type polynomials. Hence, we first
state the criterion in the following lemma. For details, we refer to [11, Proposition
3.1.15].
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Lemma 2. Let F be a field and G(X,T ) ∈ F[X,T ]. Write

G(X,T ) = Gd(X)T d +Gd−1(X)T d−1 + · · ·+G1(X)T +G0(X)

for some Gi(X) ∈ F[X] for i = 0, . . . , d. Set C(X) = gcd(Gd(X), . . . , G0(X)).
For an irreducible polynomial P (X) ∈ F[X], we denote the multiplicity of P (X)
in Gi(X) by mi. Suppose that the following holds.

(i) m0 > 0 and gcd(m0, d) = 1,
(ii) mi ≥ m0 for all i = 1, . . . , d− 1, and

(iii) md = 0.

Then G(X,T )/C(X) is absolutely irreducible over F.

3.1 Polynomials of Gold type

In this subsection, we apply Proposition 1 to the polynomials of the form f(X) =

X2k+1 +
∑η
j=1 cjX

2kj+1 ∈ F2n [X], which are Gold type polynomials. In [9], it
is shown that F2k+1(X,Y, 1) can be factorized as follows:

F2k+1(X,Y, 1) =
∏

α∈F
2k
\F2

(X + (α+ 1)Y + α) . (5)

Lemma 3. For k ≥ 2, let f(X) = X2k+1 + g(X), where g(X) =
∑2k

j=` cjX
j ∈

F2n [X] with c` 6= 0. Suppose that there exists α ∈ F2k \F2 such that Fj(α, 0, 1) =
0 for all j > ` and F`(α, 0, 1) 6= 0. Then f(X) is not exceptional APN over F2n .

Proof. For f(X) = X2k+1 +
∑2k

j=` cjX
j , by Equation (4) we have

G(X,T ) =

2k+1∑
j=`

cjFj(X, 0, 1)T 2k+1−j .

That is, the coefficient of T i in G(X,T ) is Gi(X) = F2k+1−i(X, 0, 1) for i =
0, . . . , 2k + 1− `. Note that by Equation (5), we have F2k+1(X, 0, 1) =∏
α∈F

2k
\F2

(X + α). That is, the minimal polynomial P (X) of α over F2n is a

simple factor of F2k+1(X, 0, 1). The assumption Fj(α, 0, 1) = 0 implies that P (X)
is also a factor of Fj(X, 0, 1) for all j > `, but it is not a factor of F`(X, 0, 1). In
other words, we have the following.

(i) P (X) is a simple factor of G0(X), i.e., m0 = 1.
(ii) P (X) is a factor of Gi(X), i.e., mi ≥ m0, for all i = 1, . . . , 2k − `.
(iii) P (X) is not a factor of G2k+1−`(X), i.e., m2k+1−` = 0.

Hence by Lemma 2, G(X,T )/C(X) is absolutely irreducible over F2n . In par-
ticular, G(X,T ) has an absolutely irreducible factor over F2n that has a term
containing T , and hence we obtain the desired conclusion by Proposition 1. �
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Corollary 1. There are no exceptional APN binomials of Gold type. That is,

if f(X) = X2k+1 + cX2l+1 for a non-zero c ∈ F2n then f(X) is not exceptional
APN over F2n .

Proof. Let α ∈ F2k \ F2t(6= ∅), where F2t = F2k ∩ F2l . Then α satisfies the
conditions in Lemma 3, and hence the result follows from Lemma 3. �

We can extend the previous result for Gold type polynomials that are not
binomials.

Theorem 1. For k ≥ 2, let f(X) = X2k+1+g(X), where g(X) =
∑η
j=1 cjX

2kj+1 ∈
F2n [X] for some positive integers k1 < k2 < · · · < kη < k and cj 6= 0 for
j = 1, 2, . . . η. If gcd(k1, . . . , kη, k) < gcd(k2, . . . , kη, k) then f(X) is not excep-
tional APN over F2n .

Proof. Let gcd(k1, . . . , kη, k) = s and gcd(k2, . . . , kη, k) = st for some integers
s ≥ 1, t > 1. Then F2st ⊆ F2kj for all j = 2, . . . , η, F2st ⊆ F2k and F2st ∩ F2k1 =
F2s . By Equations (4) and (5), we have the following equalities.

G(X,T ) =

η∑
j=1

cjF2kj+1(X, 0, 1)T 2k−2kj + F2k+1(X, 0, 1)

=

η∑
j=1

cj

 ∏
α∈F

2
kj
\F2

(X + α)

T 2k−2kj +
∏

α∈F
2k
\F2

(X + α) (6)

Let α ∈ F2st \ F2s , i.e., α ∈ F2k \ F2. By Equation (6), we have Fj(α, 0, 1) = 0
for all j > 2k1 + 1 and F2k1+1(α, 0, 1) 6= 0. Then we obtain the desired result by
Lemma 3. �

Remark 2. Set d = deg(g(x)) = 2kη +1. We observe that for a sufficiently integer
kη, we have d ≡ 1 mod 4 and d 6≡ 5 mod 8. Also, gcd(k, η) > 1 implies that
gcd(2k + 1, d) > 1, and hence we observe that F2k+1 and Fd are not relatively
prime. In particular, Theorem 1 gives new classes of non-exceptional Gold type
polynomials, which can not be obtained from previously known characterization,
see Lemma 3.

3.2 Polynomials of Kasami-Welch type

In this subsection, we similarly apply Proposition 1 to the polynomials of the

form f(X) = X22k−2k+1 +
∑η
j=1 cjX

22kj−2kj+1 ∈ F2n [X], which are Kasami-
Welch type polynomials. In [9], it is shown that F22k−2k+1(X,Y, 1) can be fac-
torized as follows:

F22k−2k+1(X,Y, 1) =
∏

α∈F
2k
\F2

Pα(X,Y ),
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where Pα(X,Y ) is an absolutely irreducible polynomial over F2k of degree 2k+1
such that for each α ∈ F2k \ F2

Pα(X, 0) = (X + α)
2k+1

. (7)

By using above factorization, we have the following result.

Theorem 2. For k ≥ 2, let f(X) = X22k−2k+1 + g(X), where g(X) =∑η
j=1 cjX

22kj−2kj+1 ∈ F2n [X] for some positive integers k1 < · · · < kη < k and
cj 6= 0 for j = 1, . . . , η. Suppose that k is an even integer with gcd(k1, k) = 1
and gcd(k1, . . . , kη) > 1. Then f(X) is not exceptional APN over F2n .

Proof. It is sufficient to show that G(X,T ) given in Equation (4) is absolutely
irreducible over F2n since the desired result then follows from Lemma 1. By
Equation (7), we can write G(X,T ) as follows.

G(X,T ) =

η∑
j=1

cjF22kj−2kj+1(X, 0, 1)T 22k−2k−22kj+2kj + F22k−2k+1(X, 0, 1)

=

η∑
j=1

cj

 ∏
α∈F

2
kj
\F2

(X + α)
2kj+1

T 22k−2k−22kj+2kj +
∏

α∈F
2k
\F2

(X + α)
2k+1

Note that G(X,T ) is absolutely irreducible if and only if

H(X,T ) = T 22k−2k−22k1+2k1G(X, 1/T ) ∈ F2n [X,T ]

is absolutely irreducible. Set A`(X) =
∏
α∈F

2`
\F2

(X + α)
2`+1

. Then

H(X,T ) = Ak(X)T 22k−2k−22k1+2k1 +

η∑
j=1

cjAkj (X)T 22kj−2kj−22k1+2k1 .

Let gcd(k1, . . . , kη) = s for some integer s > 1, i.e., F2s ⊆ F2ki for all i = 1, . . . , η.
We have F2k1 ∩ F2k = F2, since gcd(k1, k) = 1, . Then α ∈ F2s \ F2 is a root of
Aki(X) of multiplicity 2ki + 1 for all i = 1, . . . , η and Ak(α) 6= 0. That is, the
multiplicity of the minimal polynomial P (X) of α over F2n is 0 in Ak(X), and
it is 2ki + 1 in Aki(X), where 2ki + 1 ≥ 2k1 + 1 for all i = 1, . . . , η. Set

m = gcd(22k − 2k − 22k1 + 2k1 , 2k1 + 1).

We will show thatm = 1 under the assumptions k ≡ 0 mod 2 and gcd(k1, k) =
1. Since 22k1 − 2k1 ≡ 2 mod (2k1 + 1), we have the following equalities.

m = gcd(22k − 2k − 2, 2k1 + 1) = gcd(22k−1 − 2k−1 − 1, 2k1 + 1)

= gcd(2k−1 − 1, 2k1 + 1)gcd(2k + 1, 2k1 + 1) = gcd(2k + 1, 2k1 + 1).
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Note that in the last equality we used the fact that

gcd(2k−1 − 1, 2k1 + 1) =
2gcd(k−1,2k1) − 1

2gcd(k−1,k1) − 1
= 1

since gcd(k− 1, 2k1) = gcd(k− 1, k1), which follows from the assumption that k
is even. Moreover, we have

gcd(2k + 1, 22k1 − 1) =
gcd(22k − 1, 22k1 − 1)

gcd(2k − 1, 22k1 − 1)
=

2gcd(2k,2k1) − 1

2gcd(k,2k1) − 1
= 1

since gcd(2k, 2k1) = gcd(k, 2k1) = 2, which follows from the assumptions that
gcd(k1, k) = 1 and k is even. Note that gcd(2k + 1, 2k1 + 1) is a divisor of
gcd(2k + 1, 22k1 − 1), and hence we conclude that gcd(2k + 1, 2k1 + 1) = 1, which
implies that m = 1. Then we conclude that H(X,T ) is absolutely irreducible by
Lemma 2, which gives the desired conclusion. �

Remark 3. Set d = deg(g) = 22kη − 2kη + 1. Then d ≤ 22k − 2k + 1 and
d ≡ 1 mod 4 for a sufficiently large integer kη. Moreover, by [9], we know
that F22kj−2kj+1 is not absolutely irreducible for all j = 1, . . . η. In particular,
Theorem 2 gives new classes of non-exceptional Kasami-Welch type polynomials,
which can not be obtained from previously known characterization, see Lemma
3.

4 An approach by Kummer’s theorem

In this section we use the theory of function fields to obtain more classes of
polynomials of Gold or Kasami-Welch type that are not exceptional APN. We
need a special case of Kummer’s theorem, see [11, Corollary 3.3.8] which we
summarize as follows:
Let F(x) be a rational function field over the constant field F and H(x)(Y ) =
Y n + hn−1(x)Y n−1 + · · · + h0(x) ∈ F(x)[Y ] be an irreducible polynomial over
F(x). Let F = F(x, y) be the function field defined by H(x)(y) = 0. We consider
the function field extension F(x, y)/F(x). Let γ ∈ F such that hj(γ) 6=∞, i.e., γ
is not a pole of hj(x), for all j = 0, . . . , n − 1. Denote by Pγ the rational place
of F(x) corresponding to x− γ. Suppose that

H(γ)(Y ) := Y n + hn−1(γ)Y n−1 + · · ·+ h0(γ) ∈ F[Y ]

has the following factorization in F[T ] :

H(γ)(Y ) =

r∏
i=1

ψi(Y ),

where ψi(Y )’s are irreducible, monic, pairwise distinct polynomials. Then there
are exactly r places Pi of F lying over Pγ such that the relative degree of Pi over
Pγ is the degree of ψi. In particular, if one of the ψi has degree 1, the residue
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field of Pi and Pγ are the same, namely F. That is, F is the full constant field F .
Then by [11, Corollary 3.6.8] we conclude that H(x)(Y ) is absolutely irreducible
over F(x).

Write hi(X) = ki(X)/`i(X) for some relatively prime polynomials ki(X), `i(X)
∈ F[X]. Set `(X) = lcm(`n−1(X), . . . , `0(X)) and k(X) = gcd(kn−1(X), . . . , k0(X))
in F[X], where lcm and gcd are the least common multiple and greatest com-
mon divisor, respectively. Then the absolutely irreducibility of h(x)(Y ) over F(x)
implies that H(X,Y ) := `(X)h(X)(Y )/k(X) ∈ F[X,Y ] is absolutely irreducible
over F.

Now we apply the approach explained above to the following type of Kasami-
Welch polynomials.

Theorem 3. Let f(X) = X22k−2k+1 +
∑η
j=1 cjX

22kj−2kj+1 ∈ F2n [X] with cj 6=
0 for j = 1, . . . , η. If the polynomial F (T ) =

∑η
j=1 cjT

22k−2k−22kj+2kj + 1 has a
root α ∈ F2n then f(X) is not exceptional APN over F2n .

Proof. We recall that if f(X) = X22k−2k+1 +
∑η
j=1 cjX

22kj−2kj+1 ∈ F2n [X] then
the polynomial G(X,T ) in Equation (4) is given by

G(X,T ) =

η∑
j=1

cjAkj (X)T 22k−2k−22kj+2kj +Ak(X),

where A`(X) =
∏
α∈F

2`
\F2

(X + α)
2`+1

. Then by Proposition 1, it is sufficient

to show that G(X,T ) has an absolutely irreducible factor over F2n that has a

term containing T . Set Y := T 2k1 , then G̃(X,Y ) := G(X,T ) is given by

G̃(X,Y ) =

η∑
j=1

cjAkj (X)Y 22k−k1−2k−k1−22kj−k1+2kj−k1 +Ak(X).

Note that A`(1) = 1 for any ` > 1, i.e.,

L(Y ) := G̃(1, Y ) =

η∑
j=1

cjY
22k−k1−2k−k1−22kj−k1+2kj−k1 + 1.

By our assumption, we have G(1, α) = 0 for some α ∈ F2n . This implies that

L(β) = 0, where β = α2k1 . The fact that the derivative L′(Y ) = c1Y
22k−k1−2k−k1−2k1

implies that L(Y ) is a separable polynomial. That is, β is a simple root of
L(Y ). Let H(X,Y ) = hn(X)Y n + hn−1(X)Y n−1 + · · · + h0(X) be an irre-
ducible factor of G̃(X,Y ) such that H(1, Y ) is divisible by Y + β. Note that
deg G̃(X,Y ) = deg L(Y ), and hence deg H(X,Y ) = deg H(1, Y ). That is,
hn(1) 6= 0. Then for

h(x)(Y ) = Y n + fn−1(x)Y n−1 + · · ·+ f0(x),

where fi(x) = hi(x)/hn(x) for i = 0, . . . , n − 1, we have fi(1) 6= ∞ for all
i = 0, . . . , n− 1. Moreover, since L(Y ) is separable, h(1)(Y ) factors into pairwise
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distinct irreducible factors such that one of them is Y + β. That is, h(x)(Y )
satisfies the properties given above. Hence, hn(X)h(X)(Y ) = H(X,Y ) is an
absolutely irreducible polynomial over F2n .

We now show that the absolute irreducibility ofH(X,Y ) implies the existence

of an absolute irreducibility factor of H(X,T 2k1 ) over F2n which has a term
containing T . Then we obtain the desired conclusion by Proposition 1.

Suppose that H(X,T 2k1 ) = A(X,T )B(X,T ) for some relatively prime poly-
nomials A,B ∈ F̄ (X)[T ], where F̄ is the algebraic closure of F2n . We without

loss of generality suppose that B(X,T ) = P (X,T )s2
`

for an absolutely irre-
ducible polynomial P ∈ F̄ [X,T ], which has a term containing T , and positive
odd integer s. Note that

H̃(X,T )2
k1

= H(X2k1 , T 2k1 ) = A(X2k1 , T )B(X2k1 , T ) (8)

for some H̃ ∈ F2n [X,T ]. Since A(X,T ), B(X,T ) are relatively prime over F̄ (X),

the polynomials A(X2k1 , T ), B(X2k1 , T ) are relatively prime over F̄ (X). Then

Equation (8) implies that B(X2k1 , T ) = (B̃(X,T ))2
k1

for some B̃ ∈ F̄ [X,T ].
This shows that the exponents of T in B(X,T ) is divisible by 2k1 , i.e., B(X,T ) =

B̄(X,T 2k) for some B̄ ∈ F̄ [X,Y ]. Similarly, A(X,T ) = Ā(X,T 2k) for some
Ā ∈ F̄ [X,Y ]. This implies that H(X,Y ) = Ā(X,Y )B̄(X,Y ). Since H(X,Y ) is

absolutely irreducible, H(X,Y ) = B̄(X,Y ), and hence H(X,T 2k1 ) = B(X,T ) =

P̃ (X,T )s, where P̃ (X,T ) = P (X,T )2
`

= P (X2` , T 2`). Then it is enough to
observe that s = 1 to show P ∈ F2n [X,Y ]. For this, we show that the exponents

of T in P̃ (X,T ) are divisible by 2k1 , i.e., P̃ (X,T ) = P̄ (X,T 2k1 ) for some P̄ ∈
F̄ [X,Y ]. This implies that H(X,Y ) = B(X,Y ) = P̄ (X,Y )s, which gives the
desired conclusion s = 1. Let

P̃ (X,T ) = pm(X)Tm + pm−1(X)Tm−1 + · · ·+ p1(X)T + p0(X).

First note that p0(X) 6= 0 as T is not a factor of G(X,T ). Denote the coefficient

of Tµ in P̃ (X,T )s by cµ. Since B(X,T 2k1 ) = P̄ (X,T )s, we conclude that cµ 6= 0
only if µ is divisible by 2k1 . We proceed by induction on pµ(X). Note that
c1 = p1(X)p0(X)s−1 = 0 implies that p1(X) = 0. Then p1(X) = 0 implies
that c2 = p2(X)p0(X)s−1, and hence p2(X) = 0 if k1 > 1. Then we conclude
that p`(X) = 0 for all ` = 1, . . . , 2k1 − 1 by induction. Suppose that for some
t ≥ 1 we have that pµ(X) = 0 for all µ ≤ t2k1 if µ is not divisible by 2k1 . Then
0 = ct2k1+` = pt2k1+`(X)p0(X)s−1, and hence pt2k1+`(X) = 0, which gives the
desired conclusion. �

We apply the same approach to the polynomials of Gold type and obtain the
following result.

Theorem 4. Let f(X) = X2k+1 +
∑η
j=1 cjX

2kj+1 ∈ F2n [X] with cj 6= 0 for

j = 1, . . . , η. If the polynomial F (T ) =
∑η
j=1 cjT

2k−2kj + 1 ∈ F2n [T ] has a root
α ∈ F2n then f(X) is not exceptional APN over F2n .
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Corollary 2. If f(X) = X22k−2k+1 +
∑2s−1
j=1 X22kj−2kj+1 or f(X) = X2k+1 +∑2s−1

j=1 X2kj+1 then f(X) is not exceptional APN over F2. In particular, by The-
orems 3 and 4 we obtain classes of non-exceptional Gold and Kasami-Welch type
polynomials for sufficiently large k, which can not be obtained from previously
known characterization given in Lemma 3, Theorems 1 and 2.
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