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Abstract. Aaronson defined Forrelation (2010) as a measure of correla-
tion between a Boolean function f and the Walsh-Hadamard transform of
another function g. Very recently, we have studied different cryptograph-
ically important spectra of Boolean functions through the lens of Forrela-
tion. In the present draft, we explore a similar kind of correlation in terms
of Nega-Hadamard transform. We call it Nega-Forrelation and obtain a
more efficient sampling strategy for Nega-Hadamard transform compared
to the existing results. Moreover, we present an efficient sampling strat-
egy for nega-crosscorrelation (and consequently nega-autocorrelation)
spectra too, by tweaking the Nega-Forrelation technique.
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1 Introduction

The Forrelation problem, defined by Aaronson et al. [1] presents one of the
central questions in the quantum black-box model that has been used to show
separation between the bounded error quantum model and the randomized clas-
sical model. Forrelation estimates the amount of correlation between a Boolean
function, f and the Walsh-Hadamard transform of another Boolean function, g.
While the result of [2] was to show theoretical separation, it has been recently
noted [4] that the algorithm can also be used for efficient sampling of differ-
ent spectra of Boolean functions, for example the Walsh-Hadamard, the cross-
correlation and the autocorrelation spectra. Keeping in mind the effectiveness of
Forrelation algorithm, an immediate question one may ask is whether similar for-
mulation can be derived for the efficient sampling of the Nega-Hadamard trans-
forms. In this regard, we define the Nega-Forrelation (denoted as ηf1,f2,f3) which
measures the correlation (suitably modified with respect to complex numbers)
between a Boolean function, f1 with the Nega-Hadamard and conjugate Nega-
Hadamard transforms of f2, f3 respectively and present related results here.

The idea of Nega-Hadamard transform was introduced by Riera and Parker
[7]. They considered some generalized bent criteria for Boolean functions which



would have flat spectrum with respect to Nega-Hadamard transform, different
from the Walsh-Hadamard transform. As pointed out in [7], such a transform is
motivated by local unitary transforms that play an important role in the struc-
tural analysis of pure n-qubit stabilizer quantum states. The authors provided
several motivations for this transform, and in the context of cryptology, they have
pointed out certain observations related to the S-Box of AES [7, Section I(C),
Page 4145]. In general, like the Walsh-Hadamard and autocorrelation spectra of a
Boolean function, the studies in Nega domain provide further possibilities in the
analysis of Boolean functions when those are used as cryptographic primitives.
This paper, in fact, connects the work done in [2], [7], and [4] and provides a
deeper understanding of the state-of-the-art results in terms of Nega-Forrelation.

Aaronson, S. & Ambainis, A.
“Forrelation” [2]

Riera, C. & Parker, M.G.
“Nega-Hadamard Transform” [7]

Dutta, S., Maitra, S. & Mukherjee, C.S.
“Boolean Functions’ Spectra” [4]

Nega-Forrelation

In this draft, we formulate the Nega-Forrelation algorithms. We also recol-
lect the tricks and tweaks used in [4] and modify them judiciously in the Nega-
Forrelation algorithms for an efficient sampling of the Nega-Hadamard spectra.
For technical purposes, we will mostly follow the notations used in [4] unless
otherwise mentioned and refer to that paper as a prerequisite.

The Hadamard gate, mathematically represented as H = 1√
2

(
1 1
1 −1

)
, plays

an important role in all the major quantum algorithms in the black-box (query)
paradigm. Given an unknown Boolean function, f the functioning of Uf on
an n + 1 qubit state |x〉 |−〉, can be given as: Uf |x〉 |−〉 = f(x) |x〉 |−〉. When
applied to the all zero state, |0n〉 the n-qubit Hadamard gate results in an equal
superposition of all possible states, leading to the quantum parallelism. Now, we
consider a similar kind of quantum gate, known as the Nega-Hadamard gate ([7],
[5]), which is mathematically represented as N = 1√

2

(
1 i
1 −i

)
, where i =

√
−1.

Observe that, since the first column of H and N are essentially same, both the
Nega-Hadamard (N) and the Hadamard (H) gates behave in an exact similar
manner, when applied to the all zero state, |0n〉. However, when applied to a

generic n-qubit quantum state |ψ〉 =
∑

x∈{0,1}n αx |x〉 with
∑

x∈{0,1}n |αx|2 = 1,

the n-qubit Nega-Hadamard gate, (N⊗n) acts as follows.

N⊗n
(∑

x∈{0,1}n αx |x〉
)

= 1√
2n

∑
x∈{0,1}n αx

(∑
y∈{0,1}n (−1)x·y(i)wt(x) |y〉

)
.

Being a complex matrix, taking conjugate of N forms in a new quantum gate,
mathematically denoted as N = 1√

2

(
1 −i
1 i

)
and the functioning of N over the

generic quantum state |ψ〉 is given as follows.

N
⊗n (∑

x∈{0,1}n αx |x〉
)

= 1√
2n

∑
x∈{0,1}n αx

(∑
y∈{0,1}n (−1)x·y(−i)wt(x) |y〉

)
.



Note that, unlike the Forrelation algorithm, where the n-qubit Hadamard
gates are used at the beginning, in between the oracles and towards the end of
the circuit, in Nega-Forrelation we use different combination of H, N and N
gates judiciously in order to manipulate the final state and obtain the desired
results. Note that the Phase gate, S = ( 1 0

0 i ) can also be exploited to introduce
the factor (i)wt(x) at any point of time in the algorithm. We will be using these
quantum gates frequently as tricks and tweaks while designing the quantum
algorithms for the Nega-Forrelation in later sections.

Boolean functions are one of most fundamental combinatorial objects that
has various applications in the domain of quantum algorithms. Following [2,4],
here also we define Boolean functions to be a mapping of the form {0, 1}n →
{−1, 1} and denote the set of all n-variable Boolean functions as Bn. For a formal
definition of a Boolean function, one may refer to [4, Definition 1].

Given oracle access of Boolean functions f1, f2, f3 ∈ Bn, we design the algo-
rithms for estimating the values of (3-fold) Nega-Forrelation ηf1,f2,f3 . The first
one makes 3 sequential queries and upon measurement, we obtain the all zero
state with probability |ηf1,f2,f3 |2. Note that, since Nega-Forrelation is complex
valued, the probability is also given by complex square of the amplitude, ηf1,f2,f3 .
The second algorithm makes 2 parallel queries to the functions, f1, f2, f3 and the
probability of one pre-determined qubit (driving qubit) being in the 0 states is
given by 1

2 (1 + < (ηf1,f2,f3)), where <(z) denotes the real part of the complex
number z. We use both these algorithms, along with some necessary tricks and
tweaks to provide efficient sampling of different Boolean functions’ spectra in
later sections. The organization of this draft is as follows.

Organization and Contributions. In Section 2, we define (3-fold) Nega-Forrelation
and present two quantum algorithms for estimating the same. The first one re-
quires 3 sequential queries to compute the Nega-Forrelation values whereas the
second algorithm estimates the real component of the Nega-Forrelation values
with the help of two parallel queries. Here, we also provide a strategy to sam-
ple the small values of the nega-Hadamard transform more efficiently compared
to the Extended Deutsch-Jozsa algorithm. Section 3 presents the results re-
lated to sampling of Nega-crosscorrelation and thus the nega-autocorrelation
spectra using Nega-Forrelation. First we sample the Nega-crosscorrelation value
at any given point and then we present a method to sample the entire Nega-
crosscorrelation spectra and the Nega-crosscorrelation spectra for a particular
weight using Dicke state. We refer to [4] and the references therein for most of
the definitions. Rest we explain here.

For a binary string ω ∈ {0, 1}n, the number of 1’s in the bit pattern of ω is
called the (Hamming) weight of the string, denoted as wt(ω). We now define the
Nega-Hadamard transform of a Boolean function, following the references [5,9].

Definition 1. The Nega-Hadamard transform of a function, f ∈ Bn at any
given point, ω ∈ {0, 1}n is a complex-valued function, mathematically defined
as Nf (ω) = 1√

2n

∑
x∈{0,1}n f(x) · (−1)x·ω(i)wt(x), where x · ω = x1ω1 ⊕ x2ω2 ⊕



. . . ⊕ xnωn is the inner product of x and ω, and wt(x) denotes the Hamming
weight of the binary string x and i =

√
−1.

The multiset
{
Nf (ω) : ω ∈ {0, 1}n

}
is called the Nega-Hadamard spectra of

the function f . For any given f ∈ Bn, the constraint,
∑
ω∈{0,1}n |Nf (ω)|2 = 2n is

known as the Nega-Parseval’s identity, where |Nf (ω)|2 = Nf (ω)Nf (ω) denotes
the complex square of Nf (ω). We use this result in Section 2 for an efficient
sampling of Nega-Hadamard spectrum.

Given f1, f2 ∈ Bn, the cross-correlation between f1 and f2 is given by the
sum, Cf1,f2(y) =

∑
x∈{0,1}n f1(x)f2(x⊕ y). Whereas, taking f1 = f2 = f in

the above expression gives the autocorrelation of the function, f ∈ Bn, rep-
resented by Cf,f (y) ≡ Cf (y) =

∑
x∈{0,1}n f(x)f(x⊕ y). Now we provide the

formulations of nega-crosscorrelation and nega-autocorrelation as given in [9].

Definition 2 ([9]). The nega-crosscorrelation of two functions f1, f2 ∈ Bn at

any point y ∈ {0, 1}n is defined as Ĉf1,f2(y) =
∑

x∈{0,1}n
f1(x)f2(x ⊕ y)(−1)x·y.

Whenever f1 = f2 = f , we obtain the formulation for nega-autocorrelation for
f ∈ Bn at a given point y ∈ {0, 1}n.

In Section 3, we provide efficient sampling of the nega-crosscorrelation and the
nega-autocorrelation spectra using (3-fold) Nega-Forrelation.

Let us now briefly discuss the Forrelation formulation [1,2], which is one
of the central results in the study of separating the computational power of
the bounded error quantum and classical probabilistic models in the black-box
(query) model.

Definition 3 ([1]). Given f1, f2 ∈ Bn, the (2-fold) Forrelation measures the
amount of correlation between the function f1 and the Walsh-Hadamard trans-
form of the function f2, which can be mathematically represented as

Φf1,f2 =
1

2n

∑
x1∈{0,1}n

f1(x1)Wf2(x1) =
1

23n/2

∑
x1,x2∈{0,1}n

f1(x1)(−1)x1·x2f2(x2).

For further understanding of the Forrelation problem and its application, the
readers are referred to [1,2,4] and the references therein. Following the idea of
Forrelation, we now introduce the concept of (3-fold) Nega-Forrelation in the
next section.

2 The (3-fold) Nega-Forrelation

Forrelation, defined by Aaronson et al. [1], captures the amount of correlation
between a Boolean function, f with the normalized Walsh Spectrum of another
Boolean function g. In our recent work [4], we revisited the Forrelation problem
to provide efficient sampling of different cryptographically significant spectra of



Boolean functions, namely Walsh, cross-correlation and the autocorrelation spec-
tra. Since the Forrelation problems provides a more efficient sampling strategy
compared to the existing methodologies, an immediate question one might ask
is that whether a similar formulation could be given in terms of Nega-Hadamard
transform of a Boolean function. In this direction, here we introduce the Nega-
Forrelation.

Definition 4. Given Boolean functions f1, f2, f3 ∈ Bn, (3-fold) Nega-Forrelation
measures the amount of correlation among the functions f1, the Nega-Hadamard
transform of f2 and the conjugate Nega-Hadamard transform of f3 which can be

mathematically formulated as ηf1,f2,f3 =
1

2n

∑
x∈{0,1}n

f1(x)Nf2(x)Nf3(x).

Observe that ηf1,f2,f3 can also be expressed as

1
2n

∑
x1∈{0,1}n f1(x1)

(
1

2n/2

∑
x2∈{0,1}n f2(x2)(i)wt(x2)(−1)x1·x2

)
(

1
2n/2

∑
x3∈{0,1}n f3(x3)(−i)wt(x3)(−1)x1·x3

)
= 1

22n

∑
x1,x2,x3∈{0,1}n

f2(x2)(i)wt(x2)(−1)x1·x2f1(x1)(−1)x1·x3(−i)wt(x3)f3(x3).

Remark 1. Note that in the definition of Nega-Forrelation, we consider Nega-
Hadamard transform of one function and conjugate Nega-Hadamard transform
of another function. This is due to the fact that Nega-Hadamard transform are
complex numbers and when f2 = f3 = f , we obtain the complex-square of the
Nega-Hadamard transform values for the function, f , where the combinations
are decided by the function f1 = g. Furthermore, for f2 = f3 = f , the Nega-
Forrelation values, ηg,f,f is always a real number.

This result along with the Nega-Parseval’s identity provide an efficient sampling
technique of Nega-Hadamard transform compared to the existing result [5]. Now
we present both the 3-query and 2-query quantum algorithms for obtaining the
3-fold Nega-Forrelation values.

2.1 Quantum algorithms for (3-fold) Nega-Forrelation

We begin with the 3-query quantum algorithm. Given oracle access to f1, f2, f3 ∈
Bn, we obtain the 3-fold Nega-Forrelation values, ηf1,f2,f3 , beginning with the

state |0〉⊗n |−〉 and traverse through the following sequence of steps,

H⊗n → Uf2 → N⊗n → Uf1 → H⊗n → Uf3 → N
⊗n

where all the n-qubit gates
(
H⊗n, N⊗n, N

⊗n)
are applied to the n query-qubits

and the oracles are applied to all the (n+ 1) qubits.
Ignoring the last qubit, the amplitude corresponding to |0〉⊗n state becomes

1

22n

∑
x1,x2,x3∈{0,1}n

f2(x2)(i)wt(x2)(−1)x1·x2f1(x1)(−1)x1·x3(−i)wt(x3)f3(x3),



q1 |0〉 H

Uf2

N

Uf1

H

Uf3

N

q2 |0〉 H N H N
...

...
...

...
...

...

qn |0〉 H N H N

qn+1 |−〉

Fig. 1. The 3-query quantum circuit for estimating Nega-Forrelation, ηf1,f2,f3 .

which is equal to ηf1,f2,f3 . Since, ηf1,f2,f3 is a complex number, the probability of

observing the all zero state upon measurement is given by |ηf1,f2,f3 |2. We denote

this 3-query Nega-Forrelation algorithm for ηf1,f2,f3 by Ã3,3
n (f1, f2, f3).

Remark 2. Note that, unlike Forrelation algorithm where only the Hadamard
gates were used in between the oracles, here we use the Nega-Hadamard and
conjugate Nega-Hadamard gates judiciously in order to obtain the desired for-
mulation. For any given functions f1, f2, f3 ∈ Bn, the circuit of Ã3,3

n makes 3
sequential queries and uses 2n many Hadamard gates, n many Nega-Hadamard
gates and n many conjugate-Nega Hadamard gates.

Analogous to the idea of parallel query Forrelation algorithm [2], we now
present the 2-query quantum algorithm for estimating Nega-Forrelation.

Given oracle access to f1, f2, f3 ∈ Bn, we begin with an (n+ 2)-qubit state,
|+〉 |0〉⊗n |−〉, where the first qubit is called the ‘driving qubit’ and the next n
qubits are the query-qubits. We first apply the n-qubit Hadamard gate, H⊗n to
all the query qubits, and distribute the state as follows:

|+〉 |0〉⊗n |−〉 Hn

−−→ 1√
2n+1

(∑
x2∈{0,1}n |0〉 |x2〉 |−〉+

∑
x3∈{0,1}n |1〉 |x3〉 |−〉

)
.

Then controlled on the driving qubit being in the |0〉 state we sequentially
apply Uf2 → N⊗n → Uf1 → H⊗n and obtain the state

|0〉√
23n+1

∑
x1,x2,x3∈{0,1}n

f2(x2)(i)wt(x2)(−1)x1·x2f1(x1)(−1)x1·x3 |x3〉 |−〉 .

Similarly, controlled on the driving qubit being in the |1〉 state, we sequentially

apply: S⊗n → Uf3 and obtain the state |1〉√
2n+1

∑
x3∈{0,1}n

f3(x3)(i)wt(x3) |x3〉 |−〉 .

After ignoring the last qubit and assuming the following notations:

αx3 =
(

1√
23n+1

∑
x1,x2∈{0,1}n f2(x2)(i)wt(x2)(−1)x1·x2f1(x1)(−1)x1·x3

)
and βx3 = 1√

2n+1
f3(x3)(i)wt(x3),

we obtain the final state, (say) |ψ〉 =
∑

x3∈{0,1}n (αx3 |0〉 |x3〉+ βx3 |1〉 |x3〉) .
Finally, we measure the driving qubit in Hadamard basis, which is equivalent to
applying a Hadamard gate, followed by the measurement in the {|0〉 , |1〉} basis.
Therefore, the final state becomes

1√
2

 ∑
x3∈{0,1}n

(αx3 + βx3) |0〉 |x3〉+
∑

x3∈{0,1}n
(αx3 − βx3) |1〉 |x3〉





and thus the probability of obtaining |0〉 |x3〉, where x3 ∈ {0, 1}n, is given by

1

2

∑
x3∈{0,1}n

|αx3 + βx3 |2 =
1

2

 ∑
x3∈{0,1}n

(
|αx3 |2 + |βx3 |2

)
+ <

(
αx3βx3

)
where <(z) denotes the real part of the complex number, z.

Since
∑

x3∈{0,1}n |αx3 |2 + |βx3 |2 denotes the sum of squares of all the ampli-

tudes for the state |ψ〉, it is equal to 1. Moreover, check that αx3βx3
= ηf1,f2,f3 .

Therefore, the probability of observing |0〉 upon measuring the driving qubit is
given by 1

2 (1 + < (ηf1,f2,f3)) . We denote the 2-query Nega-Forrelation algorithm

by Ã2,3
n . Figure 2 provides a schematic diagram of the quantum circuit for

Ã2,3
n (f1, f2, f3).

D |+〉 • • H

q1 |0〉

H⊗n S⊗n
Uf3 Uf2

N⊗n
Uf1

H⊗n

q2 |0〉
...

qn |0〉
qn+1 |−〉

Fig. 2. The 2-query quantum circuit for Nega-Forrelation.

For n-input Boolean functions, the quantum algorithm Ã2,3
n makes one query

to each of the functions and the number of quantum gates required in are given
as follows. 2n + 1 many Hadamard gates, n many Nega-Hadamard gates and
n many Phase gates. Since Nega-Forrelation value, ηf1,f2,f3 can be a complex

number, using the algorithm, Ã2,3
n we can only estimate the real part of ηf1,f2,f3

and not the complete Nega-Forrelation values. Next we present the strategies for
sampling the Nega-Hadamard transform using Ã3,3

n and Ã2,3
n .

2.2 Sampling of Nega-Hadamard transform using Nega-Forrelation

Given a Boolean function f ∈ Bn and a set of points S ⊆ {0, 1}n, we now present
a strategy for sampling the Nega-Hadamard transform of f using (3-fold) Nega-
Forrelation. Recall that using the extended Deutsch-Jozsa algorithm, we can
sample the Nega-Hadamard transform of f with probability 1

2n

∑
x∈S |Nf (x)|2.

Let us denote this by p.
From the definition of Nega-Forrelation: ηg,f,f = 1

2n

∑
x∈{0,1}n g(x) |Nf (x)|2.

Let us define g ∈ Bn such that, g(x) = −1 for all x ∈ S and 1 otherwise. Then the

ηg,f,f can be written as ηg,f,f = 1
2n

(∑
x 6∈S |Nf (x)|2 −∑x∈S |Nf (x)|2

)
. From

Nega-Parseval’s identity,
∑

x∈{0,1}n |Nf (x)|2 = 2n we obtain,
∑

x6∈S |Nf (x)|2 =

2n −∑x∈S |Nf (x)|2. As a result, ηg,f,f can now be written as

1

2n

(
2n −

∑
x∈S
|Nf (x)|2 −

∑
x∈S
|Nf (x)|2

)
= 1− 2

2n

(∑
x∈S
|Nf (x)|2

)
= 1− 2p.



Thus p =
1−ηg,f,f

2 , which is same as the probability of obtaining 1 upon mea-

suring the driving qubit from running the algorithm Ã2,3(g, f, f). Therefore, we
have the following proposition.

Proposition 1. The probability of obtaining 1 upon measuring the driving qubit
from running the algorithm Ã2,3(g, f, f) where g(x) = −1, ∀x ∈ S and g(x) = 1

otherwise, is given by p = 1
2n

∑
x∈S |Nf (x)|2.

Remark 3. Since ηg,f,f is real, while considering the probability from algorithm

Ã2,3, we have < (ηg,f,f ) = ηg,f,f . Therefore, the 2-query algorithm Ã(3,2)(g, f, f)
makes a single query to f and another query to g, designed based on the set S,
behaves exactly equivalent to the extended Deutsch-Jozsa algorithm in terms of
sampling the Nega-Hadamard transform.

Now we show that Ã(3,3)(g, f, f) can be used for an improvement. Observe
that, upon running the algorithm Ã3,3(g, f, f), the probability of obtaining a
state with at-least one many 1 in the output bit-pattern is given by 1 − η2g,f,f .

Using ηg,f,f = (1−2p) we obtain, 1−η2g,f,f = 1−(1− 2p)
2

= 4p−4p2. Therefore,
we have the following theorem.

Theorem 1. Given f, g ∈ Bn and a set of points S ⊆ {0, 1}n such that g(x) =
−1, ∀x ∈ S and g(x) = 1 otherwise, the 3-query quantum algorithm Ã3,3(g, f, f)
outputs bit-pattern containing at-least one many 1 with probability 4p− 4p2.

When p < 0.75, we observe that 4p − 4p2 > p. Therefore, the 3-query Nega-
Forrelation algorithm Ã3,3(g, f, f) samples the small values Nega-Hadamard
transform of f more efficiently as compared to the extended Deutsch-Jozsa
algorithm [5]. Moreover, using the extended Deutsch-Jozsa twice (two queries
to f) one can sample the Nega-Hadamard transform values with probability
1 − (1 − p)2 = 2p − p2 which is also less compared to sampling probability ob-
tained from Ã3,3. We can check that the sampling probability from Ã3,3 is also
better compared to applying the extended Deutsch-Jozsa once followed by a sin-
gle round of amplitude amplification. For graphical understanding, one might
refer to [4, Figure 4].

3 Nega-crosscorrelation sampling algorithms using
Nega-Forrelation

Here we provide an efficient sampling of the nega-crosscorrelation spectra, and
consequently the nega-autocorrelation spectra, using the Nega-Forrelation algo-
rithms, with some necessary tricks and tweaks. In this regard, we use the follow-
ing observation due to [9, Lemma 4], which connects the nega-crosscorrelation
of two functions, f1, f2 ∈ Bn with the product of Nega-Hadamard transform of
the corresponding functions.

Lemma 1 ([9]). If f1, f2 ∈ Bn, then the nega-crosscorrelation equals

Ĉf1,f2(y) = (i)wt(y)
∑

x∈{0,1}n
Nf1(x)Nf2(x)(−1)x·y.



For the proof of this lemma, one can refer to [8, Lemma 4]. Using this lemma, we
now provide an efficient sampling of the nega-crosscorrelation spectra using the
algorithms, Ã3,3

n and Ã2,3
n . Efficient sampling of the nega-autocorrelation spectra

follows as an immediate corollary.

Theorem 2. Given the oracle access of the functions f1, f2 ∈ Bn and a point
y ∈ {0, 1}n, the algorithm Ã3,3

n estimates the nega-crosscorrelation value at y

where the probability of observing |0〉⊗n is given by
1

22n

∣∣∣Ĉf1,f2(y)
∣∣∣2. Further,

from algorithm Ã2,3
n , the probability of obtaining the 0 state upon measuring the

driving qubit, is given by
1

2

(
1 + <

(
(−i)wt(y)Ĉf1,f2(y)

2n

))
.

Proof. Assuming h(x) = (−1)x·y is a linear function in Bn, we can write Ĉf1,f2(y)

as Ĉf1,f2(y) = (i)wt(y)
∑

x∈{0,1}n
h(x)Nf1(x)Nf2(x) = (i)wt(y)2n · ηh,f1,f2 , which

implies ηh,f1,f2 = 1
2n (−i)wt(y)Ĉf1,f2(y). Rest of the proof follows directly. ut

This gives us a constant query algorithm for sampling the nega-crosscorrelation
value for any two functions, f1, f2 ∈ Bn at any given point, y ∈ {0, 1}n. For

f1 = f2 = f , we obtain the constant query sampling of nega-autocorrelation, Ĉf
as an immediate corollary.

From [4, Algorithm 1], we can now design a quantum circuit where we pass
superposition of states in the Nega-Forrelation circuit in place of the linear func-
tion h(x) [refer to figure 3] and we observe that the amplitude of the all zero

state is given by
∑

y∈{0,1}n αy(y) |y〉
(
Ĉf,g(y)

2n |0n〉+ βy |Wy〉
)
.

r1 |0〉

Cn

•
r2 |0〉 •

...
...

rn |0〉 •

q1 |0〉 H • N

Uf1

H

Uf2

N

q2 |0〉 H • N H N

...
...

...
...

...
...

qn |0〉 H • N H N

qn+1 |0〉 X H

Fig. 3. Quantum circuit for sampling the complete nega-crosscorrelation spectra.

Thus, when Cn = H⊗n, the left most oracle becomes a superposition of all
possible linear functions which helps in sampling of the entire spectra of Nega-
crosscorrelation. Here the coefficient αy(y) = 1

2
n
2

. Therefore the corresponding

probability of observing the all zero state is given by
Ĉf,g(y)

2

23n .



Moreover, assuming UDn
m prepares the Dicke state, |Dn

m〉 of weight m, re-
placing Cn = UDn

m, we obtain the probability of observing the all zero state is
Ĉf,g(y)

2

(n
m)22n

, where the Hamming weight of y is m. This also improves the Nega-

crosscorrelation sampling for small values of m, than the existing results.

We have run all the algorithms in IBMQ simulator (‘ibmq qasm simulator’ )
and found the observations matching the theoretical results. However, the results
from real quantum machines were found to be deviated due to noise. Implemen-
tation of these algorithms in a noisy quantum environment could be a future
research possibility in this direction.
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