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Abstract. We consider the proximity testing problem for error-correcting
codes which consist in evaluations of multivariate polynomials either of
bounded individual degree or bounded total degree. Namely, given an
oracle function f : Lm

Ñ Fq, where L Ă Fq, a verifier distinguishes
whether f is the evaluation of a low-degree polynomial or is far (in rel-
ative Hamming distance) from being one, by making only a few queries
to f . This topic has been studied in the context of locally testable codes,
interactive proofs, probabilistically checkable proofs, and interactive or-
acle proofs. We present the first interactive oracle proofs of proximity
(IOPP) for tensor products of Reed-Solomon codes (evaluation of poly-
nomials with bounds on individual degrees) and for Reed-Muller codes
(evaluation of polynomials with a bound on the total degree).
Such low-degree polynomials play a central role in constructions of prob-
abilistic proof systems and succinct non-interactive arguments of knowl-
edge with zero-knowledge. For these applications, highly-efficient mul-
tivariate low-degree tests are desired, but prior probabilistic proofs of
proximity required super-linear proving time. In contrast, for multivari-
ate codes of length N , our constructions admit a prover running in time
linear in N and a verifier which is logarithmic in N .
For fixed constant number of variables m, the efficiency parameters of
our IOPPs for multivariate codes compare well, all things equal, with
those of the IOPP for Reed-Solomon codes of [Ben-Sasson et al., ICALP
2018] from which they are directly inspired.

Keywords: Algebraic coding theory · Reed-Solomon codes · Product
codes · Reed-Muller codes · Low degree testing · Interactive proof sys-
tems.

This is an extended abstract of an article submitted to the journal Designs,
Codes and Cryptography in August 2021. The full version of the paper is avail-
able online [1].

1 Introduction

Let Fq be a finite field of size q. Any function f : Fmq Ñ Fq can be written as a
polynomial of individual degrees at most q´1, hence a polynomial of total degree



ď mpq´1q. The problem of low-degree testing can be formulated as follows. Given
a proximity parameter δ P p0, 1q and oracle access to a function f : Fmq Ñ Fq (as
a table of values), check with a few queries whether f is is a polynomial function
of low degree compared to q, or δ-far in relative Hamming distance from being
low-degree. The main focus of this paper is the problem of low-degree testing
applied to a function f : Lm Ñ Fq with L Ă Fq. Multivariate low-degree tests fall
into two flavors. Depending on whether one requires a bound on the total degree
or the individual degree, a multivariate low-degree test is either a proximity test
for a Reed-Muller code or the m-wise tensor product of a Reed-Solomon code.

Low-degree tests have been the subject of a substantial body of research dur-
ing the past four decades. Indeed, design and better analysis of low-degree tests
have gone hand in hand with the construction of efficient probabilistically check-
able proofs (PCPs), interactive proofs (IPs) and locally testable codes (LTCs).
One motivation for designing probabilistic proof systems with low communica-
tion complexity, fast generation and sublinear verification is the application to
verifiable computation. In [2], the authors point out that a subsequent bottle-
neck of PCP-based proof systems is that of computing solutions to the low-degree
testing problem for multivariate polynomials. A few years ago, [6,15] introduced
interactive oracle proofs (IOPs), which generalize both PCPs, IPs and interac-
tive PCPs [13] and open a new large design space. On the contrary of known
PCPs constructions, it turns out that the IOP model enable the design of proofs
systems that are efficient enough for practical applications of zero-knowledge
proofs and schemes for delegated computation. Interactive oracle proofs of prox-
imity (IOPP) are the natural generalization of probabilistically checkable proofs
of proximity (PCPP) [12,8] to the IOP model (see Definition 1). Several of con-
structions, including [3,5,14,11], crucially rely on a prover-efficient IOPP for
Reed-Solomon codes which the authors of [2] named FRI protocol. Improved
soundness analysis of the FRI protocal appear in subsequent works [9,7,4]. While
multivariate low degree tests have been extensively studied in the PCPP model,
they have not been the subject of any specific constructions in the IOPP model.

1.1 Our contributions

We propose two constructions: the first is an IOPP for the tensor product of
Reed-Solomon codes, the second an IOPP for Reed-Muller codes. The alphabets
Fq which we consider admit either smooth multiplicative subgroups or smooth
affine subspaces, where smooth means that the size of the set is a power of a
small fixed integer. Our two IOPPs are generalizations of the FRI protocol [2] to
the multivariate case. If m is a constant, they have strictly linear-time prover
and strictly logarithmic-time verifier (with respect to the blocklength |L|m of
the code). In particular, query complexity is logarithmic in the degree bound d.

Previous low-degree tests required the verifier to query a number of field el-
ements linear in d. Since our constructions are explicit, all efficiency measures
of the two IOPPs are explicitly presented. These parameters match the IOPP
for Reed-Solomon codes of [2], from which they are inspired. Concerning appli-
cations to IOP constructions, having a constant number of variables m can be



relevant. Indeed, linear-size IOPs have already been constructed from m-wise
tensor product codes [10] and m were a fixed integer there.

In the case of tensor product of Reed-Solomon codes, our construction can
be generalized to distinct degree bounds and different evaluation domain. For
Reed-Muller codes and unlike previous works, we are able to consider a support
Lm where L Ă Fq can can be much smaller than Fq. We think that allowing
smaller support might give more flexibility in the design of proof systems.

2 Notations and definitions

2.1 Notations

We denote by Fq the finite field of size q and by Fˆq the multiplicative group of Fq.
We use the notation ra . . bs for the set of integers ta, a` 1, . . . , bu. Let m ě 1 be
an integer. Vectors are written in bold, and for two tuples x “ px1, . . . , xmq and
u “ pu1, . . . , umq, xu refers to xu :“ xu1

1 ¨ ¨ ¨xuk

k . Writing X “ pX1, . . . , Xmq,
FqrXs refers to the ring of polynomials in the indeterminates X1, . . . , Xm. For a
polynomial P P FqrXs, its total degree is denoted by degP , and degXj

P is the
degree of P with respect to Xj . The individual degree of P is the maximum of
the degrees in each variable.

The Hamming weight of a vector u P Fnq will be denoted by wHpuq and the
relative Hamming distance between two vectors u,u1 P Fnq by ∆pu,u1q. Given
u P Fnq and a code C Ď Fnq , we define ∆pu, Cq to be the minimal distance
between u and any codeword of C. If ∆pu, Cq ą δ, we say that u is δ-far from
C, otherwise u is δ-close to C. We will consider evaluation codes. In this setting,
we view codewords as functions in FDq for a certain domain D, and for f P C
and x P D, fpxq naturally denotes the x-entry of the codeword f .

2.2 Definitions

An IOPP pP,Vq for a code C Ă FD is a pair of probabilistic algorithms, P is
designated as prover and V as verifier. The IOPP pP,Vq has round complexity
rpnq if the prover and the verifier interact over at most rpnq rounds. At each
round, the verifier sends a message to the prover, and the prover answers with an
oracle. We denote by xP Ø Vy P taccept, rejectu the output of V after interacting
with P. The notation Vf pCq means that f is given as an oracle input to V, while
PpC, fq means that the prover has excess to full codeword. Both know the code
C.

Definition 1 (IOPP for a code C). We say that a pair of probabilistic algo-
rithms pP,Vq is an IOPP system for a code C with soundness error s : p0, 1s Ñ
r0, 1s if the following two conditions hold:

Perfect completeness: If f P C, then PrrxPpC, fq Ø Vf pCqy “ accepts “ 1.
Soundness: For any function f P FDq such that δ :“ ∆pf, Cq ą 0 and any

unbounded malicious prover P˚, PrrxP˚ Ø Vf pCqy “ accepts ď spδq.



The IOPP is public-coin if verifier’s messages are generated by public random-
ness and queries are performed after the end of the interaction with the prover.
Relevant measures for an IOPP system are the following. The alphabet of the
IOPP we consider will be a finite field Fq. The total number of field elements
of all the oracles built by the prover during the interaction is the proof length
lpnq of the IOPP. The query complexity qpnq is the total number of symbols
queried by the verifier to both the purported codeword f and the oracles sent
by the prover during the interaction. We consider arithmetic complexities, and
we assume each arithmetic operation performed in Fq takes constant time. The
prover complexity tppnq is the time needed to generate prover messages. The
verifier complexity tvpnq is the time spent by the verifier to make her decision
when queries and query-answers are given as inputs.

Definition 2 (Reed-Solomon code). Given L Ď Fq and k ď |L|, we denote
by RS rFq, L, ks the Reed-Solomon (RS) code over alphabet Fq defined by

RS rFq, L, ks :“
 

f P FLq | DP P FqrXs, degP ă k s.t. @x P L, fpxq “ P pxq
(

.

Definition 3 (Tensor product of Reed-Solomon code). Given L Ă Fq,
and m, k ě 1, such that k ď |L|, we denote by pRS rFq, L, ksqbm the m-wise
tensor product of the code RS rFq, L, ks. Equivalently,

pRS rFq, L, ksqbm :“
!

f P FL
m

q | DP P FqrXs, degXi
P ă k, i P r1 . . ms , such that

@x P L, fpxq “ P pxq
(

. (1)

The tensor product code pRS rFq, L, ksqbm has length |L|m, dimension km, rate
´

k
|L|

¯m

and relative distance
´

1´ k´1
|L|

¯m

.
Reed-Muller codes consist of evaluation of multivariate polynomials with

coefficients in Fq of bounded total degree. We are interested of (punctured) Reed-
Muller codes with support Lm Ă Fmq , where L may be much smaller than Fq.
Since this setting is not commonly encountered in coding theory, we introduce
the non-standard term short Reed-Muller codes to emphasize this fact.

Definition 4 (Short Reed-Muller code). A short Reed-Muller code with
support Lm Ă Fmq is defined as follows

SRM rFq, L,m, ks :“
!

f P FL
m

q | DP P FqrXs, degP ă k s.t. @x P Lm, fpxq “ P pxq
)

.

If k ď |L|, the evaluation map from the space of multivariate polynomials of
total degree less than k to the space of functions FLm

q is injective, thus the
dimension of SRM rFq, L,m, ks is

`

m`k´1
m

˘

. A bound on the minimum distance
of SRM rFq, L,m, ks follows from the Schwartz-Zippel lemma [17,16], which states
that any non-zero multivariate polynomial P P FqrXs of total degree less than
q cannot vanish in more than degP

|L| fraction of Lm. The code SRM rFq, L,m, ks
has length |Lm|, rate

`

m`k´1
m

˘

|L|
´m and relative distance at least 1´ k´1

|L| .



Proposition 1 (Low-degree extension). Let H1, . . . ,Hm Ď Fq and let f :

H1 ˆ ¨ ¨ ¨ ˆHm Ñ Fq be a function. Then there exists a unique polynomial pf in
m variables over Fq such that :

1. pf has degree degXi
pf ă |Hi| in its i-th variable,

2. pf agrees with f on H1 ˆ ¨ ¨ ¨ ˆHm.

The polynomial pf is referred to as the low-degree extension of the function f
(with respect to Fq and H1, . . . ,Hm).

3 Technical overview

In this section, we present a technical overview of our constructions. For the
sake of brevity, we do not provide proofs of the presented results. We refer the
interested reader to the full version of the paper for detailed proofs. Moreover,
we restrict ourselves to the following setting. Assume that Fq is a prime field and
q ´ 1 is divisible by a power of two, i.e. q “ a ¨ 2n ` 1 for some positive integers
a and n. We will consider L0 Ă Fq a cyclic multiplicative group of order 2n. For
any integer r, we define a sequence of evaluation sets pLiq0ďiďr as: Li`1 :“ qpLiq
where qpXq “ X2. Our target degree bound for low-degree testing will be k0 a
power of 2, k0 ă |L0|. For r “ log k0, denote by RSmi the code RS rFq, Li, kisbm

with ki “ k0{2
i. Similarly, set SRMi :“ SRM rFq, Li,m, kis.

Our IOPP have r rounds of interactions, where in each round, the problem
of proximity testing to a code RSmi (resp. SRMi) is reduced to a problem of size
2m times smaller, namely proximity testing to RSmi`1 (resp. SRMi`1).

The observation which forms the basis of our constructions is the following
decomposition of multivariate polynomials.

Proposition 2 (Multivariate decomposition). For every pf P FqrXs there
exists a unique sequence ppgeqePr0. .l´1sm of polynomials in FqrXs such that

pfpXq “
ÿ

ePr0. .l´1sm

Xe
pge

`

X2
1 , . . . , X

2
m

˘

, (2)

and

– for all e P r0 . . l ´ 1s
m and j P r1 . . ms, degXj

pge ď

Z

degXj
pf

l

^

,

– for all e P r0 . . l ´ 1s
m, deg pge ď

Y

deg pf´wHpeq
l

]

.

3.1 IOPP for tensor product of Reed-Solomon codes

For each code RSmi , 0 ď i ă r, we define a family of folding operators satisfying
three key properties: completeness, local computability and distance preservation.



Definition 5 (Folding operators). Let i P r0, r ´ 1s. Let f : Lmi Ñ Fq be an
arbitrary function and let pf be its low-degree extension. Let ppgeqePt0,1um be the
2m m-variate polynomials provided by Proposition 2 applied to pf . We consider
their evaluations on Lmi`1, respectively denoted by ge. For any p P Fmq , we define
the folding of f Fold rf,ps as the following function:

Fold rf,ps :

$

&

%

Lmi`1 Ñ Fq,
y ÞÑ

ÿ

ePt0,1um

pegepyq. (3)

Proposition 3 (Key properties of folding operators). Definition 5 satisfy
the following properties.

1. Completeness: For any p P Fmq , if f P RS
m
i , then Fold rf,ps P RSmi`1.

2. Local computability: Let f : Lmi Ñ Fq be an arbitrary function and let
p P Fmq . The value of Fold rf,ps at any y P Lmi`1 can be computed with
exactly 2m queries to f .

3. Distance preservation: Let fi : Lmi Ñ Fq be an arbitrary function. Let ε P
`

0, 13
˘

and δ ă 1´ p1´ λ` εq
1
3 . If ∆pf,RSmi q ą δ, then

Pr
pPFm

q

“

∆pFold rf,ps ,RSmi`1q ă δ ´mε
‰

ă
2m

ε2q
.

The completeness property follows directly from the decomposition of bounded
degree multivariate polynomials. The local computability is obtained by proving
that for any y P Lmi`1, the value Fold rf,ps pyq corresponds to the evaluation at
z P Fm of the polynomial of degree 1 in each variable which interpolates the set
of points

 

px, fpxqq | px21, . . . , x
2
mq “ y

(

. The distance preservation property is
a consequence of Proposition 4, which states the following. Given pueqePt0,1um
where ue P FD, it suffices that enough elements in the set of multilinear combi-
nations of u are δ-close to a code C Ă FD to deduce that each ue is δ1-close to
C with δ1 “ δ ` opmq. In other words, there exists a non trivial subset of loca-
tions T Ă D such that the restriction of each function ue to T is a codeword of
the code C T “ tc T : T Ñ F; c P Cu. Proposition 4 can be proved by induction
on the number of variables m, where the base case m “ 1 is dealt with in [7,
Lemma 3.2].

Proposition 4 (Correlated agreement). Let m be a positive integer. Let
C Ă FDq be a linear code of relative distance λ “ ∆pCq. Let ε, δ ą 0 such that
ε ă 1{3 and

δ ă 1´ p1´ λ` εq1{3. (4)

Let u “ pueqePt0,1um such that

Pr
pPFm

q

»

–∆

¨

˝

ÿ

ePt0,1um

peue, C

˛

‚ă δ

fi

fl ě
2m

ε2q
. (5)

Then there exist T Ă D and a family v “ pveqePt0,1um P C
2m such that



– |T | ě p1´ δ ´mεq |D|,
– for each e P t0, 1u

m, ue|T “ ve|T .

Given a sequence of codes pRSmi q0ďiďr and a family of folding operators for
each code RSmi , we present the construction of a public-coin IOPP pPRSm ,VRSmq

for the code RSm0 in Figure 1. As in the FRI protocol [2], our protocol is divided
into two phases. The COMMIT phase is an interaction over r rounds between a
prover P and a verifier V. At each round i, the verifier samples a random element
pi P

`

Fmq
˘t. The prover answers with an oracle function fi`1 : Lmi Ñ Fq, which

is expected to coincide with Fold rfi,pis. The second phase is run only by the
verifier V, and is called QUERY phase. The task of V is to check whether each
pair of oracle functions pfi, fi`1q is consistent and to perform a membership
test to the last code. The local computability property of the folding operators
enables both the prover to run in linear with respect to |Lm0 | and the verifier to
perform the consistency checks with two queries to each oracle.

COMMIT Phase: (interactive)
1. For each round i from 0 to r ´ 1 :

(a) Verifier V picks uniformly at random an element pi P pF
m
q q

t;
(b) Verifier V sends pi to Prover P;
(c) An honest Prover P computes Fold rfi,pis : L

m
i`1 Ñ Fq

QUERY Phase: (run by V only)
1. Repeat α times the following query test:

(a) Sample y0 P L
m
0 uniformly at random;

(b) For i “ 0 to r ´ 1:
i. Define yi`1 P L

m
i`1 as yi`1 “ πipyiq;

ii. Query fi on Syi`1
of size li to compute Fold rfi,pis pyi`1q;

iii. Query fi`1pyi`1q;
iv. If fi`1pyi`1q ‰ Fold rfi,pis pyi`1q, outputs reject

2. Outputs acccept if and only if fr P Cr

Fig. 1. Construction of an IOPP based on folding operators

The properties of the resulting IOPP system pPRSm ,VRSmq are displayed in
Theorem 1.

Theorem 1. Let k,m be positive integers. Assume k is a power of two and
L Ă Fˆq is a 2-smooth coset of a multiplicative subgroup or additive subgroup
of Fq. Then, there exists a public-coin IOPP system pPRSm ,VRSmq for the tensor
product code pRS rFq, L, ksqbm of blocklength nm with the following properties.

1. Round complexity is rpnmq ă log n.
2. Query complexity is qpnmq ă α2m log n`1 for α repetitions of the QUERY

phase.



3. Proof length is lpnmq ă nm

2m´1 .
4. Prover complexity is tppnmq ă 4pm` 2qnm.
5. Verifier decision complexity is tvpnmq ă 4αp2m `mq log n.
6. Perfect completeness: If f P pRS rFq, L, ksqbm and if the oracles f1, . . . fr

are computed by an honest prover PRSm , then VRSm outputs accept with
probability 1.

7. Soundness: Assume that f : Lm Ñ Fq is δ-far from pRS rFq, L, ksqbm.
Denote λ the relative minimum distance of pRS rFq, L, ksqbm and, for any
ε P

`

0, 13
˘

, set γpλ, εq :“ 1´ p1´ λ` εq1{3. Then, for any unbounded prover
P˚, the verifier VRSm outputs accept after α repetitions of the QUERY phase
with probability at most

2m log n

ε2q
` p1´minpδ, γpε, λqq ` εm log nqα.

3.2 IOPP for Short Reed-Muller codes

The IOPP for Short Reed-Muller codes is obtained following the blueprint we
used for the individual degree case. However, the total degrees of the polyno-
mials appearing in the decomposition of Proposition 2 range from

Y

deg f´m
2

]

to
Y

deg f
2

]

. Contrasting with foldings operators for bounded individual degree poly-
nomials (and univariate polynomials), that area of variation needs to be taken
into account to ensure both completeness and distance preservation properties.

Definition 6 (Balancing functions). Let i P r0 . . r ´ 1s. For any e P t0, 1u
m,

we call a balancing function any map he : Lmi`1 Ñ Fq which corresponds to the
evaluation of a m-variate multilinear monic monomial phe of total degree exactly
Y

wHpeq
2

]

. We call pheqePt0,1um a balancing tuple for the code SRMi`1.

Definition 7 (Folding operator). Let i P r0, r´ 1s. Let pheqePt0,1um be a bal-
ancing tuple for SRMi`1 and let f : Lmi Ñ Fq be an arbitrary function. Let
ppgeqePt0,1um be the 2m m-variate polynomials provided by Proposition 2 applied
to pf . We consider their evaluations on Lmi`1, respectively denoted by ge. For any
pp,p1q P

`

Fmq
˘2, we define the folding of f as the function Fold rf, pp,p1qs : Lmi`1 Ñ Fq

such that

Fold
“

f, pp,p1q
‰

pyq “
ÿ

ePt0,1um

pegepyq `
ÿ

ePt0,1um

e‰0

p1
e
hepyqgepyq. (6)

With folding operators defined as per Definition 7, we are able to prove the
analogous of Proposition 3 for Short Reed-Muller codes. Plugging them into the
protocol depicted in Figure 1 leads to the following theorem.

Theorem 2. Let k,m be positive integers. Assume k is a power of two and
L Ă Fq is a 2-smooth coset of a multiplicative subgroup or additive subgroup of



Fq. There exists a public-coin IOPP system pPRM,VRMq testing proximity of a
function f : Lm Ñ Fq to the short Reed-Muller code SRM rFq, L,m, ks with the
following properties:

1. Round complexity is rpnmq ă log n.
2. Query complexity is qpnmq ă αp2m log n ` 1q for a QUERY phase with

repetition parameter α.
3. Proof length is lpnmq ă nm

p2m´1q .
4. Prover complexity is tppnmq ă

`

5
2m` 14

˘

nm.
5. Verifier decision complexity is tvpnmq ă α2m

`

5
4m` 7

˘

log n.
6. Perfect completeness: If f P SRM rFq, L,m, ks and if the oracles f1, . . . fr

are computed by an honest prover, then VRM outputs accept with probability
1.

7. Soundness: Assume that f : Lm Ñ Fq is δ-far from SRM rFq, L,m, ks. De-
note λ “ 1´2 k

|L| . For any ε P p0,
2
3 q, set γpε, λq :“ min

`

1´ p1´ λ` εq1{3, 12 pλ`m
ε
2 q
˘

.
Then, for any unbounded prover P˚, the verifier V outputs accept after α
repetitions of the QUERY phase with probability at most

r
16m

ε2q
` p1´minpδ, γpε, λqq ` rmεqα.
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