
On the (In)security of optimized Stern-like signature
schemes

André Chailloux

Inria de Paris, COSMIQ team, andre.chailloux@inria.fr

Abstract. Stern’s signature is an important code-based signature scheme.
An important optimization is to generate pseudo-random vectors and
permutation instead of random ones, and most proposals that are based
on Stern’s signature use this optimization. However, its security hasn’t
been properly analyzed. In this article, we study the security of this
optimization. We first show that for some parameters, there is an attack

that exploits this optimization and breaks the scheme in time O(2λ2)
while the claimed security is λ bits. This impacts in particular the recent
Quasy-cyclic Stern signature scheme [BGS21]. Our second result shows
that there is an efficient fix to this attack. By adding a string salt ∈
{0, 1}2λ to the scheme, and changing slightly how the pseudo-random
strings are generated, we prove not only that our attack doesn’t work
but that for any attack, the scheme preserves λ bits of security, and
this fix increases the total signature size by only 2λ bits. Additionally,
we perform this analysis against quantum adversaries. This result not
only has an impact on the Quasy-cyclic Stern signature scheme but also
on other Stern-based signature scheme. While those aren’t impacted by
our attack, they have parameters that are too conservative so our result
shows how they can improve the efficiency of their scheme without losing
on the security.

1 Introduction

Stern’s signature scheme [Ste94] is one of the main code-based signature schemes.
As the NIST standardization process [NIS] for post-quantum cryptography advances,
the need for building efficient and secure post-quantum signature schemes becomes
increasingly important. There are many variants of Stern’s signature schemes
which have been proposed. Their security are all based on the Fiat-Shamir
transform, which is well understood even against quantum adversaries [Cha19,GHHM21].
The problem with Stern’s signature scheme is that in its original form, the
signature sizes are extremely large. There are several optimizations that are done
in order to make the signature sizes smaller, by adding some rounds, using the cut
and choose technique, or changing the metric ([Vér97],[AGS11],[CVE11],[GRSZ14],
[Beu20],[BBC+20],[BGS21]). However, once we add these optimizations, it’s unclear
whether the security reduction still holds.

In this article we study the security of one of the main optimizations in
Stern’s signature scheme. In the original scheme, the signer must generate many

random vectors u as well as a random permutations π. In the signature, some
of these have to be revealed and for others, we only have the commitment to
these values. Revealing all these values is very costly and makes the signature
very long.

The idea to improve this is to consider vectors and permutations that arise
from a pseudo-random generator. For example, for constructing a vector u ∈ Fnq ,

we use a function E : {0, 1}Sseed → Fnq that should behave like as a random
function with Sseed significantly smaller n log2(q). Instead of constructing u, we
generate a random seed ∈ Sseed and construct u = E(seed). This greatly reduces
the signature size since instead of revealing u, we can only reveal seed.

This idea has been used in several proposals but has never been properly
proven and we don’t even know to what extent this optimization remains secure.
In order to maintain λ bits of security1 should we have Sseed = {0, 1}2λ or can
we take Sseed = {0, 1}λ? As we said, Stern’s scheme also uses a commitment
scheme so with this optimization, can we use a deterministic commitment of size
2λ or should we use a randomized commitment scheme?

Strikingly, each proposal that uses this optimization doesn’t use the same
answers to these questions, some are quite conservative while others take the
maximum amount of risk. This shows the necessity to study this problem and
to give an answer for what is and what isn’t possible.

Our first contribution is to show that taking the maximum risk, i.e. taking
Sseed = {0, 1}λ and a deterministic commitment size of size 2λ doesn’t preserve
λ bits of security. More precisely, we present an attack on these parameters that
recovers the secret key in time O(2λ2).

Theorem 1. Consider an optimized version of Stern’s signature scheme with
deterministic commitments of size 2λ and a Sseed = λ. Then there is an attack
that recovers the secret key in time O(2λ2).

This theorem implies in particular that the security claims of [BGS21] are
incorrect, and that there is an attack on their scheme that runs in time O(2λ/2)
(their scheme is a little bit different than the one we analyze here but our attack
works the same way). The attack uses a combination of facts: the commitment
function is deterministic and the seed size is small. This prompts 2 possible fixes
to this attack:

1. Make the commitment probabilistic. This means to commit to a string z,
instead of computing Hcomm(z) for a hash function Hcomm, you first pick a
random string r of size 2λ and compute Hcomm(z||r). While the commitment
size is still 2λ you additionally must reveal r when you reveal z which adds
a cost of 2λ which is very costly since you reveal many strings. This method
was used in MQDSS signature scheme but we expect that this is unnecessary,
and that our solution can be used in their setting which would significantly
decrease the signature size.

1 When we write maintain λ bits of security, we mean that if the original scheme has
λ bits of security then the optimized scheme should also have λ bits of security.

2. Increase the seed size. If we use seeds of size 2λ instead of λ then the attack
doesn’t work, and we can actually prove security. This is again however very
costly, as the signature contains a large number of seeds.

These 2 fixes are very costly. Our second contribution is to present a fix that
will solve this problem by increasing the total signature size by only 2λ bits. The
main idea is to make to change the generation of u. Before, the protocol must
generate many vectors u1, . . . ,uR and use ui = E(seedi). Here we generate an
extra string salt ∈ {0, 1}2λ and use u = E(seedi||salt||i) (we increase the input
space of E accordingly) so we add string salt ∈ {0, 1}2λ randomly chosen at the
beginning of the signing algorithm. What is important is that while we take a
different seed for each i, the salt can remain the same for each generation of ui so
we only need to add one value salt. Our main contribution here is to show that if
E behaves like a random function then the protocol preserves λ bits of security.
Adding the index i of the vector also slightly increases the security. With this
change, we obtain the following:

Theorem 2. There is a small modification to all optimized Stern’s signatures
schemes that preserve λ bits of security with commitments of size 2λ and seed
size Sseed = λ, that increases the total signature size by 2λ bits only.

Finally, we also prove this statement in the quantum setting, where sign
queries remain classical but we otherwise have a fully quantum adversary.

Theorem 3. There is a small modification to all optimized Stern’s signatures
schemes that preserve λ bits of security with commitments of size 3λ and seed
size Sseed = 2λ, that increases the total signature size by 2λ bits only.

2 Preliminaries

2.1 Signature schemes

Definition 1. A signature scheme S consists of 3 efficient algorithms S.keygen,
S.sign and S.verify where:

– S.keygen(1λ) → (pk, sk) is the generation of the public key pk and the
secret key sk from the security parameter λ.

– S.sign(m, pk, sk) → σm : generates the signature σm of a message m from
m, pk, sk.

– S.verify(m,σ, pk) → {0, 1} verifies that σ is a valid signature of m using
m,σ, pk. The output 1 corresponds to a valid signature.

A signature scheme has perfect correctness iff. when we run (pk, sk)← S.keygen(1λ),
we have for each m

S.verify(m,S.sign(m, pk, sk), pk) = 1.

2.2 EUF-CMA Security

We consider the standard EUF-CMA security for signature schemes. To define
the advantage of an adversary A, we consider the following interaction with a
challenger:

Modeling an adversary A in the EUF-CMA model

– Initialize. The challenger generates (pk, sk) ← S.keygen(1λ) and sends pk
to A.

– Query phase. A can perform sign queries by sending each time a message
m to the challenger who generates σ = S.sign(m, pk, sk) and sends σ to A.
Let m1, . . . ,mqS the (not necessarily distinct) queries made by A.

– Output. A outputs a pair (m∗, σ∗).

Definition 2. The EUF-CMA advantage for S with an adversary A described
above is the quantity

ADVS(A) = Pr
[
S.verify(m∗, σ∗, pk) = 1∧(∀i ∈ [qS], m∗ 6= mi)

∣∣∣(pk,sk)←S.keygen(1λ)
(m∗,σ∗)←A(pk)

]
.

2.3 The syndrome decoding problem

The canonical hard problem used in code-based cryptography is the Syndrome
Decoding problem. Given a parity matrix H of a code and a syndrome s, the
goal is to find an error vector e of fixed Hamming weight such that He = s.

Problem 1. Syndrome Decoding SD(n, k, w)
Input. A matrix H ∈ F(n−k)×n

q , a column vector (the syndrome) s ∈ Fn−kq .
Goal. Find a column vector e ∈ Fnq s.t. He = s and |e| = w, where |e| = |{i :
ei 6= 0}|.

The mostly studied problem is the Binary Syndrome Decoding problem which
corresponds to the case q = 2. For any integer q ≥ 2, the decision variant of this
problem, where we ask whether a vector e of weight w satisfying He = s exists
or not, is NP hard. Most variants of this problem are also believed to be hard
on average even against quantum computers, when the input is taken from the
following distribution, after removing the error e.

Dn,k,w : H← F(n−k)×n
q , e← Sw, return (H, e, s = He). (1)

The Syndrome Decoding problem is therefore a prime candidate for designing
post-quantum cryptographic protocols.

3 Stern’s signature scheme

We first present the ideal Stern’s signature scheme without any optimization.
We actually present the identification scheme and then briefly explain how to
transform it into a signature scheme.

3.1 Ideal Stern’s signature scheme

Stern’s identification scheme for SD(n, k, w) [SIdeal]

Key generation. Sample (H, e, s = He)← DSD(n,k,w) whereDSD(n,k,w) is defined
in Equation 1. Output pk = (H, s) and sk = e.

Protocol.

1. For i from 1 to R: the prover picks a random permutation πi acting on [n]
and a random column vector yi ∈ {0, 1}n. Let ti = Hyi. Let also

zi1 = (πi||ti), zi2 = πi(yi), zi3 = πi(yi + ei).

The prover then commits to each zi1, z
i
2 and zi3 separately by computing commi

j =
Hcomm(zij) for j ∈ {1, 2, 3} and sends all the commi

j for i ∈ [R] and j ∈ {1, 2, 3}.
2. The verifier sends a uniformly random challenge c = (c1, . . . , cR) where each

ci ∈ {1, 2, 3}.
3. For i from 1 to R: the prover reveals the following to the verifier:

– If ci = 1, reveal zi2 = πi(yi) and zi3 − zi2 = πi(e).
– If ci = 2, reveal πi,yi + ei.
– If ci = 3, reveal πi,yi.

Verification. For i from 1 to R

– if ci = 1, compute zi3, check that |zi3−zi2| = w and that Hcomm(zij) = commi
j

for j = 2 and j = 3.
– if ci = 2, compute ti = H(yi+ei)−s. Compute zi1 = (πi||ti), zi3 = πi(yi+ei)

and check that Hcomm(zij) = commi
j for j = 1 and j = 3.

– if ci = 3, compute ti = H(yi), compute zi1 = (πi||ti), zi2 = πi(yi) and check
that Hcomm(zij) = commi

j for j = 1 and j = 2.

The ideal Stern’s signature scheme, thereafter denoted SIdeal is constructed
taking the above identification scheme and applying the Fiat-Shamir transform.
This means we replace the verifier’s challenge by H (M1,m) for a hash function
H where M1 is the first message sent by the prover in the identification scheme,
and m is the message to be signed. The signature σm becomes then the whole
transcript of the identification scheme and the verification remains unchanged,
where we also verify that the challenge has been correctly constructed.

3.2 Optimized version of Stern’s signature scheme

We present here an optimized version of Stern’s signature. We consider a very
simple optimized scheme, where only one vector u is replaced with a pseudo-
random vector. The optimized identification scheme is presented below, differences
with the ideal scheme are highlighted in blue.

Optimized Stern’s identification scheme for SD(n, k, w) [SOPT]

Key generation. Sample (H, e, s = He)← DSD(n,k,w) whereDSD(n,k,w) is defined
in Equation 1. Output pk = (H, s) and sk = e.

Protocol.

1. For i from 1 to R: the prover picks a random permutation πi acting on [n],
picks a random string seedi ∈ {0, 1}Sseed and computes the string ui = E(seedi)
and also defines y = π−1(u). Let also

zi1 = (πi||ti), zi2 = ui = πi(yi), zi3 = πi(yi + ei).

The prover then commits to each zi1, z
i
2 and zi3 separately by computing commi

j =
Hcomm(zij) for j ∈ {1, 2, 3} and sends all the commi

j for i ∈ [R] and j ∈ {1, 2, 3}.
2. The verifier sends a uniformly random challenge c = (c1, . . . , cR) where each

ci ∈ {1, 2, 3}.
3. For i from 1 to R: the prover reveals the following to the verifier:

– If ci = 1, reveal seedi and zi3 − zi2 = πi(e).
– If ci = 2, reveal πi,yi + ei.
– If ci = 3, reveal πi, seedi.

Verification. For i from 1 to R

– if ci = 1, compute zi2 = E(seedi), compute zi3, check that |zi3 − zi2| = w and
that Hcomm(zij) = commi

j for j = 2 and j = 3.
– if ci = 2, compute ti = H(yi+ei)−s. Compute zi1 = (πi||ti), zi3 = πi(yi+ei)

and check that Hcomm(zij) = commi
j for j = 1 and j = 3.

– if ci = 3, compute zi2 = E(seedi), compute yi = π−1(ui), compute ti =
H(yi), compute zi1 = (πi||ti), and check that Hcomm(zij) = commi

j for j = 1
and j = 2.

Again, we construct the signature scheme SOPT by applying the Fiat-Shamir
transform to the above identification scheme. We assume the pseudo-random
generator E behaves as a random function. In the next section, we prove that
if Sseed = λ, then the above scheme only has λ/2 bits of security. In actual
optimized schemes, there are even more optimization but we show that this
optimization already compromises the security of the scheme.

4 Attack on the SOPT signature scheme in time O(2λ
2)

Theorem 1. Consider the signature scheme SOPT that uses any function E :
{0, 1}λ → {0, 1}dn log2(q)e as the expansion function and a random function
Hcomm : {0, 1}∗ → {0, 1}2λ as the commitment function. There exists an attack

on SOPT recovers the secret key in time O
(

2λ2
)

, doing O
(

1
R2λ2

)
sign queries.

Proof. We first present the attack and then prove its running time.

Attack A on the SOPT signature scheme

while A doesn’t recover the secret key e:

1. Perform qS = d 1
R2 seed

2 e signature queries (with any message) and gather
all the signatures σ[1], . . . , σ[qS]. From each σ[k] gather the corresponding
commi

2[k] = (Hcomm ◦ E)(seedi[k]).
2. Find all pairs of couples ((i, k), (i′, k′)) with (i′, k′) 6= (i, k) st. commi

2[k] =
commi′

2 [k′].
3. For each such pair of couples ((i, k), (i′, k′)), if

challi[k] = 2 ∧ challi
′
[k′] 6= 2 ∧ seedi[k] = seedi

′
[k′] (2)

then the following procedure recovers e:
– From σ[k], since challi[k] = 2, you can recover zi1[k] = (πi[k], ti[k]) and
zi3[k] = πi[k](yi[k] + e).

– From σ[k′], since challi
′
[k′] 6= 2, you can recover seedi

′

k′ . But since

seedi[k] = seedi
′
[k′], you can also recover zi2[k] = Eseed

i[k] = Eseed
i′ [k′].

– From zi1[k] = (πi[k], ti[k]), zi2[k] = πi[k](yi[k]), zi3[k] = πi[k](yi[k] + e),
recover the secret key by computing:

e = (πi[k])−1 (zi3[k]− zi2[k]
)
.

where (πi[k])−1 is the inverse of (πi[k]).

We now prove that each iteration of the while loop will find the secret key
with a constant probability. First notice that with qS = d 1

R2 seed
2 e, the signing

oracle generates RqS ≥ 2 seed
2 random seeds seedi[k] ∈ 2λ with i ∈ [R] and

k ∈ [qS]. This means that with constant probability, we have a collision in these

seeds so we have (i, k) and (i′, k′) 6= (i, k) st. seedi[k] = seedi
′
[k′]. This implies

commi
2[k] = commi′

2 [k′] so the pair ((i, k), (i′, k′)) will be found by the algorithm

in step 2. For this pair, the probability that challi[k] = 2 and challi
′
[k′] 6= 2 =

2
9 since the challenges are generated from a random function. Therefore, the
algorithm will find in step 2 a pair ((i, k), (i′, k′)) st. Equation 2 is satisfied with
a constant probability which proves that each iteration of the while loop finds
the secret key with a constant probability.

In order to conclude, notice first that each iteration of the while loop performs
qS = d 1

R2 seed
2 e sign queries. Regarding the running time, we have to read O(2 seed

2)
strings to perform an iteration of the while loop. Notice also that most of pairs

found in step 3 actually satisfy seedi[k] = seedi
′
[k′] - otherwise we found a

collision in E or in Hcomm and such collisions occur with overwhelmingly small
probability.

5 Fixing the scheme

We present a modification to the protocol that will unable the above attack to
work. Changes with the previous protocol are marked in red. Even more, we
show that this modified protocol preserves λ bits of security.

Optimized Stern’s identification scheme for SD(n, k, w) [SOPT[Salt+Index]]

Key generation. Sample (H, e, s = He)← DSD(n,k,w) whereDSD(n,k,w) is defined
in Equation 1. Output pk = (H, s) and sk = e.

Protocol.

1. The prover picks a random salt ∈ {0, 1}2λ. For i from 1 to R: the prover

picks a random permutation πi acting on [n], picks a random seedi ∈ Sseed and
computes the string ui = E(seedi||salt||i) and also defines y = π−1(u). Let also

zi1 = (πi||ti), zi2 = ui = πi(yi), zi3 = πi(yi + ei).

The prover then commits to each zi1, z
i
2 and zi3 separately by computing commi

j =
Hcomm(zij) for j ∈ {1, 2, 3} and sends all the commi

j for i ∈ [R] and j ∈ {1, 2, 3}.
2. The verifier sends a uniformly random challenge c = (c1, . . . , cR) where each

ci ∈ {1, 2, 3}.
3. The prover reveals salt. For i from 1 to R: the prover reveals the following

to the verifier:

– If ci = 1, reveal seedi and zi3 − zi2 = πi(e).
– If ci = 2, reveal πi,yi + ei.
– If ci = 3, reveal πi, seedi.

Verification. For i from 1 to R

– if ci = 1, compute zi
2 = E(seedi||salt||i), compute zi3, check that |zi3−zi2| = w

and that Hcomm(zij) = commi
j for j = 2 and j = 3.

– if ci = 3, compute ti = H(yi+ei)−s. Compute zi1 = (πi||ti), zi3 = πi(yi+ei)
and check that Hcomm(zij) = commi

j for j = 1 and j = 3.
– if ci = 2, compute zi

2 = E(seedi||salt||i), compute yi = π−1(ui), compute
ti = H(yi), compute zi1 = (πi||ti), and check that Hcomm(zij) = commi

j for
j = 1 and j = 2.

We have the following

Theorem 2 (Informal). Consider the signature SOPT[Salt+Index] that uses forE a
function that behaves as a random function2. For any adversary A performing
qS sign queries and qE queries to E·(·)

ADVSOPT[Salt+Index](A) ≤ ADVSIdeal(A) + q2
S

2ssalt + qE
2sseed

.

The proof of this theorem will be given in the full version. This shows that we
can take seeds of size λ and a salt of size 2λ (even less if we limit the number of
sign queries), while preserving the same security as the ideal scheme.

Stern’s signature scheme is actually important in the context of post-quantum
cryptography since the underlying computational problem is also believed to be
hard against quantum computers. It is therefore important to have the above
claim also in the quantum setting. We have the following theorem, which we also
prove in the full version.

Theorem 3 (Informal). Consider the signature SOPT[Salt+Index] that uses for E
a function that behaves as a random function. For any adversary quantum A

performing qS (classical) sign queries and qE (possibly quantum) queries to E·(·)

ADVSOPT[Salt+Index](A) ≤ ADVSIdeal(A) + q2
S

2ssalt + q2
E

2sseed
.

Notice that the last term is
q2
E

2sseed instead of qE
2sseed which means we need to

use seeds of size 2λ if we want to preserve λ bits of quantum security.

6 Discussion and Conclusion

The takeaway from our attack is that you shouldn’t use a deterministic commitment
scheme if you possibly commit to the same string several times. This is what
happens in particular if you commit to random seeds of size λ, like in the
signature scheme SOPT. How does our work impact the existing proposals of
Stern-like signature schemes that use seeds? The first thing to say is that there is
no consensus on what should be done. Some proposals seem to be too conservative
while some proposals are vulnerable to our attack. Several proposed schemes
do use similar optimizations and we now present how our results impact these
schemes.

– [BBC+20] that relies on restricted syndrome decoding, uses seeds and hashes
both of size 256 bits. We expect that if using seeds of size 128, the performance
of their scheme could be improved.

2 The precise statement of what condition we require will also appear in the full version

– [BGS21] is directly impacted by the presented attack but can be easily
corrected with our fix.

– [CHR+20] the MQDSS signature scheme uses seeds of size λ bits and commitments
of size 2λ. However, the commitments are probabilistic so our attack doesn’t
work but this is makes the scheme quite inefficient.

– [CVE11] uses 128 bit seeds, however it doesn’t specifically commit to a single
seed so our attack doesn’t work immediately. Nevertheless, our attack at least
shows there is a risk here and we still recommend adding the salt here.

For the schemes where we believe our [salt + index] method can be used to
improve their efficiency, one needs to prove that this is indeed the case, since
each optimized scheme has its own specificities but the proof should essentially
follow the proof of Theorems 2,3. For the schemes that use seeds of size λ and
deterministic commitments of size 2λ, we presented a way to preserve their
security at a minimal cost.

References

AGS11. Carlos Aguilar, Philippe Gaborit, and Julien Schrek. A new zero-knowledge
code based identification scheme with reduced communication. In 2011
IEEE Information Theory Workshop, pages 648–652, 2011.

BBC+20. Marco Baldi, Massimo Battaglioni, Franco Chiaraluce, Anna-Lena
Horlemann-Trautmann, Edoardo Persichetti, Paolo Santini, and Violetta
Weger. A new path to code-based signatures via identification schemes
with restricted errors. CoRR, abs/2008.06403, 2020.

Beu20. Ward Beullens. Sigma protocols for mq, pkp and sis, and fishy signature
schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
pages 183–211, 2020.

BGS21. Löıc Bidoux, Philippe Gaborit, and Nicolas Sendrier. Quasi-cyclic stern
proof of knowledge, 2021.

Cha19. André Chailloux. Quantum security of the fiat-shamir transform of commit
and open protocols. IACR Cryptol. ePrint Arch., 2019:699, 2019.

CHR+20. Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska,
and Peter Schwabe. Mqdss specifications, 2020.

CVE11. Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui. A
zero-knowledge identification scheme based on the q-ary syndrome decoding
problem. In SAC, pages 171–186, 2011.

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian
Majenz. Tight adaptive reprogramming in the qrom. Springer-Verlag, 2021.

GRSZ14. Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zemor.
Ranksign: An efficient signature algorithm based on the rank metric. In
Michele Mosca, editor, Post-Quantum Cryptography, pages 88–107, 2014.

NIS. NIST. Nist post-quantum standardization,
https://csrc.nist.gov/projects/post-quantum-cryptography.

Ste94. Jacques Stern. A new identification scheme based on syndrome decoding.
In Douglas R. Stinson, editor, Advances in Cryptology — CRYPTO’ 93,
pages 13–21, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

Vér97. Pascal Véron. Improved identification schemes based on error-correcting
codes. 8(1):57–69, jan 1997.

	On the (In)security of optimized Stern-like signature schemes

