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Abstract. We generalize the Pulatov construction and obtain a rich
class of new codes with parameters of the classical binary Reed – Muller
codes. We investigate the weight distribution and a distance-invariance
property for the class of the codes. A large class of codes having the
same weight distribution and parameters as Reed – Muller codes and
nonequivalent to them is constructed.
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1 Introduction

The binary linear Reed – Muller code of order r, denoted by RM(r,m), 0 ≤ r ≤
m, is the set vectors of length n = 2m for any m ≥ 1 that correspond to the
boolean functions of m variables of degree less or equal to r. The code has size
2k, k =

∑r
i=0

(
m
i

)
and code distance 2m−r. For any admissible r and m the code

RM(r,m) has a basis of codewords having minimum nonzero weight, see [7]. We
call such basis minimum weight basis. Recall that the code RM(r + 1,m + 1)
could be represented by the well-known Plotkin construction [7]:

{(x+ y|x) : x ∈ RM(r + 1,m), y ∈ RM(r,m)}. (1)

The problem of the description of the weight distribution of classical binary
Reed – Muller codes is still open regardless of numerous improvements. The
information concerning the weight distribution of the codes could be found in
the work of Kasami and Tokura [5]. For recent developments we refer to [1, 6].

Large classes of binary nonlinear codes with the parameters of the classical
binary Reed – Muller codes were constructed and investigated by many authors,
see [8] and the paper [11] with the list of references there.

In 2009 Jungnickel and Tonchev [9] found polarity designs that have the same
parameters as projective geometry designs but are not isomorphic to them. This
disproves the well known Hamada’s conjecture for designs [3]. The extension
of the binary code spanned by the blocks of a polarity design obtained from



PG(2s, 2) is a binary linear code that is majority-logic decodable and has pa-
rameters of the Reed – Muller code RM(s, 2s+1) but inequivalent to it, see [10].
In work [4] it is shown that some of these codes even have an exquisite property
of having the same weight distribution as that of Reed-Muller codes.

The Reed – Muller codes being completely different from BCH codes some-
times are closely connected with them. The class of binary narrow-sense BCH
codes of length 2m − 1 with designed distance 2m−2 + 1 do not possess a min-
imum weight basis since the minimum weight codewords of the code coincides
with those of the punctured Reed – Muller code of order 2, see the paper [2].
Analogous statement is not valid for BCH codes with designed distance 7 for
small length, see [2].

In the paper we present a generalized Pulatov construction for codes with
parameters of the classical binary Reed – Muller codes. For the class of these
codes we investigate the important invariants and properties such as weight
distributions and distance-invariance. We find conditions when the new code
has the same weight distribution as that of RM(r,m) and when the new code
is distance-invariant. We demonstrate that distance-invariant codes from the
obtained class of codes with the same weight distribution as the classical Reed
– Muller code and nonisomorphic to them are rare. In particular we show that
there are no such codes among Pulatov’s class.

2 Construction

We assume familiarity with basic notions and definitions of coding theory, see
also [7]. Throughout the paper d denotes a code distance and w(x) denotes the
weight of a vector x. The weight distribution of a code C is the array WC , such
that WC,i equals the number of codewords of C of weight i. A binary code C
containing the all-zero vector 0 is called distance-invariant if WC = WC+x for
any x ∈ C. For two vectors y and x we denote y � x if yi ≤ xi for all i = 1, . . . , n.

Proposition 1. For any vectors z, y we have w(y + z|z) ≥ w(y) with equality
if and only if z � y.

Recall the Pulatov switching construction [8] for codes with parameters of
binary Reed – Muller codes that is a generalization of the classical Vasil’ev
switching construction for perfect codes [13]. It should be noted that a switching
approach turned out to be very fruitful for solving many problems for perfect
q-ary codes, q ≥ 2, see [11].

Throughout the paper we have n = 2m. Let ei be the vector of length n and
weight one with 1 in the ith coordinate position. Let λ : RM(r,m)→ {0, 1} be
an arbitrary function. Then the code

{(x+ y + e1λ(y)|x+ e1λ(y)) : x ∈ RM(r + 1,m), y ∈ RM(r,m)}

is the extended Pulatov code, which has the same parameters as the Reed –
Muller code RM(r+1,m+1). We see that for the all-zeros function λ the formula
represents the code RM(r + 1,m+ 1) in the well-known Plotkin approach (1).



We suggest the following generalization of the Pulatov construction. Denote
by L a set of representatives (leaders) of the cosets of RM(r + 1,m) in Fn,
with one vector in L taken for each coset exactly. Let λ : RM(r,m)→ L be an
arbitrary function. Denote by RMλ(r + 1,m+ 1) the following code:

{(x+ y + λ(y)|x+ λ(y)) : x ∈ RM(r + 1,m), y ∈ RM(r,m)}. (2)

For any fixed y of RM(r,m) we also consider the subcode

Rλy = {(x+ y + λ(y)|x+ λ(y)) : x ∈ RM(r + 1,m)}

of RMλ(r + 1,m+ 1). The latter is the union of the subcodes Rλy :

RMλ(r + 1,m+ 1) =
⋃

y∈RM(r,m)

Rλy . (3)

If λ is the all-zero, we use notation Ry to denote {(x + y|x) : x ∈ RM(r +
1,m)} and again we have the following representation of classical Reed-Muller
code (1):

RM(r + 1,m+ 1) =
⋃

y∈RM(r,m)

Ry. (4)

For any y ∈ RM(r,m) the minimum distance of the subcode Rλy coin-
cides with the minimum distance d = 2m−r of RM(r,m). For distinct y, y′ ∈
RM(r,m) and any x, x′ ∈ RM(r + 1,m) we see that by Proposition 1

w(x+ y + λ(y) + x′ + y′ + λ(y′)|x+ λ(y) + x′ + λ(y′)) ≥ w(y + y′),

which in turn is at least d. We conclude that the minimum distance of RMλ(r+
1,m + 1) is d. Depending on the choice of the function λ the obtained code
RMλ(r + 1,m+ 1) could be linear or nonlinear. We obtain the following

Theorem 1. Let L be the set of the representatives of the cosets of RM(r+1,m)
in Fn. For any λ : RM(r,m) → L the code RMλ(r + 1,m + 1) has the same
length, size and the minimum distance as those of RM(r + 1,m+ 1).

Corollary 1. For different functions λ and λ′ such that λ, λ′ : RM(r,m) → L
the codes RMλ(r+1,m+1) and RMλ′

(r+1,m+1) are different. In particular,
there are

|RM(m− r − 2,m)||RM(r,m)|

setwise different codes, obtained by construction (2).

3 Main results

Further we restrict ourselves to the case when the function λ is such that y ∈
RM(r,m) and w(λ(y)) < d/4. Throughout this section d = 2m−r is the minimum
distance of RM(r,m) and RMλ(r + 1,m+ 1).



3.1 Low weight distribution of RMλ(r + 1,m + 1)

In this section we are concerned with the weight distribution of the code (3)
and we are particularly interested in the number of low weight codewords (less
than 3d/2). The following implies that these codewords cannot arise from the
subcodes Rλy for y of weight greater than d.

Proposition 2. Let x be a codeword of RM(r + 1,m), y be a codeword of
RM(r,m) such that w(y) > d, where d = 2m−r. Then for any vector u ∈ F 2m

w(y + u+ x|u+ x) ≥ w(y) ≥ 3d/2.

Proof. The inequality w(y+u+x|u+x) ≥ w(y) holds by Proposition 1. The dis-
tribution of low, i.e. close to minimum, weights in a Reed – Muller code is known,
see [5]. In particular, the second to the lowest nonzero weight of RM(r,m) is
equal to 3d/2, so w(y) ≥ 3d/2 and we are done. N

Moreover, taking relatively small weights for functions λ the lemma below
implies that the codewords of RMλ(r+ 1,m+ 1) of minimum weight arise only
from (x+ y|x) of minimum or zero weight.

Lemma 1. Let λ : RM(r,m) → L be any function such that λ(0) = 0 and
w(λ(y)) < d/4 for any y ∈ RM(r,m).

1. If y ∈ RM(r,m) is such that w(y) = d and w(x+ y + λ(y)|x+ λ(y)) = d,
for some x ∈ RM(r + 1,m) then w(x+ y|x) = d.

2. For any y ∈ RM(r,m) we have WRλy ,d
≤ WRy,d and WRMλ(r+1,m+1),d ≤

WRM(r+1,m+1),d.

Proof. 1. Suppose the opposite, i.e. w(x+y|x) > d. Then by Kasami and Tokura
Theorem [5] the codeword (x + y|x) of RM(r + 1,m + 1) is of weight at least
3d/2. We see that w(x+ y+ λ(y)|x+ λ(y)) cannot be d because w(λ(y)) < d/4,
a contradiction.

2. Recall that

Rλy = {(x+ y + λ(y)|x+ λ(y)) : x ∈ RM(r + 1,m)}

and
Ry = {(x+ y|x) : x ∈ RM(r + 1,m)}.

By (3) the code RMλ(r+ 1,m+ 1) is
⋃

y∈RM(r,m)

Rλy , whereas the original Reed-

Muller code RM(r + 1,m+ 1) is
⋃

y∈RM(r,m)

Ry, see (4). For each y ∈ RM(r,m)

we compare the numbers of vectors of weight d in Rλy and Ry.

If y = 0, then because λ(0) = 0, we have Rλ0 = R0 and WRλy ,d
= WRy,d.

If w(y) = d, the first statement of the current lemma implies that there is
an injection of vectors of Rλy having weight d into that of Ry via translation to
(λ(y)|λ(y)). So we have that WRλy ,d

≤WRy,d.



Any vector of Ry is (x+ y + λ(y)|x+ λ(y)) for some x ∈ RM(r + 1,m). For
w(y) > d taking u = λ(y) in Proposition 2 we see that w(x+y+λ(y)|x+λ(y)) >
3d/2 and there are no vectors of Rλy with weight d.

N

Now we consider the case that gives the codes with weight distribution dif-
ferent from that of RM(r + 1,m+ 1).

Lemma 2. Let λ : RM(r,m) → L be any function such that λ(0) = 0 and
w(λ(y)) < d/4 for any y ∈ RM(r,m). If there is a codeword y′ of RM(r,m)
such that w(y′) = d, λ(y′) � y′, then WRλ

y′ ,d
= 0 and WRMλ(r+1,m+1),d <

WRM(r+1,m+1),d.

Proof. Suppose the opposite, i.e. the vectors (x+y′+λ(y′)|x+λ(y′)) and y′ are of
weight d. Then by Lemma 1 the vector (x+y|x) is of weight d. This implies that
x � y′ by Proposition 1. Again, Proposition 1 applied to (x+y′+λ(y′)|x+λ(y′)),
gives that x + λ(y′) � y′. We have that x � y′, x + λ(y′) � y′, λ(y′) � y′, a
contradiction.

N

The following proposition describes a ”good case” in the sense that weight
distributions of RMλ(r + 1,m+ 1) and RM(r + 1,m+ 1) coincide.

Proposition 3. Let λ : RM(r,m) → L be any function such that λ(y) � y
holds for any y ∈ RM(r,m). Then WRMλ(r+1,m+1) = WRM(r+1,m+1).

3.2 Distance-invariance in case of two-valued functions

In this section we consider two-valued functions λ taking only relatively small
weights.

Lemma 3. For any r,m such that 0 ≤ r ≤ m, 1 ≤ m and i ∈ {1, . . . , 2m} the
code

{y : y ∈ RM(r,m), yi = 0}

has a minimum weight basis.

Proposition 4. Let i be in {1, . . . , 2m} and the function λ be such that λ(y) =
yiei for any y ∈ RM(r,m). Then the code RMλ(r + 1,m + 1) coincides with
RM(r + 1,m+ 1) up to a permutation.

Theorem 2. For any r,m, 0 ≤ r ≤ m, 1 ≤ m and any u ∈ F 2m , w(u) < d/4,
let λ be any function from RM(r,m) to {0, u} such that λ(0) = 0. Then the code
RMλ(r + 1,m+ 1) is distance-invariant and WRMλ(r+1,m+1) = WRM(r+1,m+1)

if and only if it is the Reed-Muller code RM(r + 1,m+ 1) up to a permutation.



Proof. The sufficiency follows from Proposition 4.
Let us prove the necessity. Let i be such that ui is 1. The code RM(r,m) is

the union of {y : y ∈ RM(r,m), yi = 0} and its coset {y : y ∈ RM(r,m), yi = 1}.
We denote these subcodes by RM0(r,m) and RM1(r,m) respectively. We now
consider the values of λ on RM0(r,m).

Let RMλ(r + 1,m+ 1) be distance-invariant and have the same weight dis-
tribution as RM(r + 1,m + 1). We first show that λ is all-zero on RM0(r,m).
Suppose that opposite. Because λ(0) = 0 and λ takes value u on a vector of
RM0(r,m) by Lemma 3 there is a sequence of codewords y1, . . . , yt from the
code RM0(r,m) satisfying y1 = 0, λ(0) = 0, λ(yt) = u such that for any
j ∈ {1, . . . , t− 1} we have d(yj , yj+1) = d. Therefore, in this sequence there are
two vectors of RM0(r,m), which we denote by ỹ and y, at distance d such that
λ(ỹ) = 0, λ(y) = u.

Since λ(ỹ) = 0 the vector (ỹ|0) is a codeword of RMλ(r+1,m+1). We show
that WRMλ(r+1,m+1)+(ỹ|0),d < WRM(r+1,m+1),d.

Consider the function λ′ such that for any y ∈ RM(r,m)

λ′(y) = λ(y + ỹ).

In view of the function λ′ introduced above it is not hard to see that

RMλ(r + 1,m+ 1) + (ỹ|0) = RMλ′
(r + 1,m+ 1).

By the choice of y and ỹ in RM0(r,m) at distance d, the vector y + ỹ has
weight d and belongs to RM0(r,m). Moreover, by the definition of the function
λ′, we have that λ′(y+ ỹ) = λ(y+ ỹ+ ỹ) = λ(y) = u. Note that the ith position
of the vectors in RM0(r,m) is zero whereas the ith position of the vector u is 1,
so u � y + ỹ.

We apply Lemma 2 to the function λ′ and y′ = y + ỹ and we obtain

WRMλ′ (r+1,m+1),d = WRMλ(r+1,m+1)+(ỹ|0),d < WRM(r+1,m+1),d.

We conclude that when λ has nonzeros on RM0(r,m) the code RMλ(r +
1,m+1) can not be distance invariant and have the weight-distribution as Reed-
Muller code simultaneously.

The same argument for the values of λ on the cosetRM1(r,m) ofRM0(r,m)
implies that either λ is the all-zero on RM1(r,m) or λ is constant, which is
equal to u. In the latter case the function λ is zero only on the subcode {y ∈
RM(r,m), yi = 0}. If we assume that u is of weight greater than 1, we repeat
the proof above for any i′, ui′ = 1, i′ 6= i and obtain that λ has zeros only on
{y ∈ RM(r,m), yi′ = 0}, a contradiction.

We see that if RMλ(r + 1,m + 1) is distance-invariant and has the same
weight distribution as RM(r+ 1,m+ 1), then λ is the all-zero function or there
is i ∈ {1, . . . , 2m} such that λ(y) = yiei for all y ∈ RM(r,m). In the first case
the code RMλ(r+ 1,m+ 1) coincides with RM(r+ 1,m+ 1) and in the second
case by Proposition 4 it is equivalent to RM(r + 1,m+ 1).

N



Proposition 5. Let λ : RM(r,m) → L be a linear function. Then the code
RMλ(r + 1,m+ 1) is linear.

A large class of distance-invariant codes can be obtained from linear func-
tions. However, in case of functions taking only two values of relatively small
weights, the weight distributions of the obtained codes do not coincide with
that of classic Reed – Muller codes or gives such codes up to permutations, see
Theorem 2.

Corollary 2. There are at least

(|RM(r,m)| − 1)(−1 +

d/4−1∑
i=0

(2
m

i ))− 2m + 1

pairwise distinct linear codes RMλ(r + 1,m+ 1) such that WRMλ(r+1,m+1),d <
WRM(r+1,m+1),d.

Proof. We take any linear function λ : RM(r,m) → {0, u}, w(u) < d/4 which
is not the all-zero function and not λ(y) = yiei, i ∈ {1, . . . , 2m}. The corollary
follows from Proposition 5 and Theorem 2. N

Conclusion. We suggested a new construction for codes with parameters of
Reed – Muller codes. In view of Proposition 3 we see that there are many codes
with the same parameters and weight distribution as Reed – Muller codes. The
results given in Section 3 demonstrate that it is rather difficult to find distance-
invariant codes with the same number of the minimum weight codewords as in
any Reed-Muller code.
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