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Abstract. We proove a conjecture on the complexity of a structural attack on the One-
Way Public-Key Encryption scheme (OW-PKE) based on Gabidulin codes distorted by
a small dimensional vector space. This work was presented at PQCrypto 2017. We show
that the complexity to recover a polynomial-time decoder for the public code essentially
depends on the secret vector space which is used to distort the structure of a Gabidulin
codes. This is a straightforward extension of Gabidulin’s idea that one can find in the
seminal paper introducing GPT systems. By taking into account the recent improvements
on the decoding of rank errors we propose sets of parameters ensuring fixed security levels
for the OW-PKE.

1 Introduction

A McEliece type OW-PKE based on Gabidulin codes was proposed in [Loi17]. It mimics
the orignal McEliece type OW-PKE. Compared to modern PKE and especially to those
proposed at the NIST post-quantum standardization process it has three main advantages.

– Decryption is deterministic. This makes it easier to handle as an IND-CCA version
than Lattice based schemes and MDPC codes based schemes.

– Key size is between one and two orders of magnitude smaller than other Hamming met-
ric based cryptosystem. It favourably compares to unstructured lattice-based PKEs
such as FrodoKEM.

– The ciphertext is small compared to unstructured lattice based OW-PKE’s and com-
pares favourably with structured lattices.

On the other its security analysis is not yet sufficiently stabilized. The security of the
scheme relies on two paradigms:

– The complexity of distinguishing the public code from random.
– The complexity of decoding a random code in rank metric.

The latter problem is a hard problem in the complexity class ZPP [GZ15]. Significant
progresses were made in the computational complexity which makes necessary to reconsider
the parameters of the original scheme [BBC+20].
Concerning the former problem, the public code is a Gabidulin code distorted with a
non-singular matrix with coefficients in a small subvector space of the ambient field. A
conjecture was claimed in [Loi17] concerning the complexity of solving the problem, for
parameters not impacted by the attack in [CC20]. In the paper we proove the conjecture
and provide a more accurate evaluation of the complexity.
From the results of that [BBC+20] and from that analysis we propose new parameters sets
for the OW-PKE.
First part we recall some background on rank metric and Gabidulin codes. In a second part
we detail the design of the OW-PKE. In a third part we show that a way to construct a
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polynomial-time decryption algorithm is to solve an underdetermined linear system. Then
we show that taking into account constraints on the small dimensional vector subspace this
system can be rewritten as a bilinear system. It is sufficient to specialize some variables
to obtain an underdetermined system giving a solution enabling to decrypt. Finally we
propose new parameters for given security targets.

2 Background on Gabidulin codes and on rank metric

Definition 1 (Rank of a vector). Let q be the power of a prime. Let Fqm be the finite
field with qm elements and a = (a1, . . . , an) ∈ Fnqm . Then the rank of a denoted by Rk(a) is
the dimension of the Fq-dimensional vector subspace of Fqm generated by the components
of a, i.e.

Rk(a)
def
= dim〈a1, . . . , an〉Fq

As extremal object in Bose-Mesner algebra Gabidulin codes were first constructed by
Delsarte. Some years later Gabidulin presented an algebraic theory as well as a polynomial-
time decoding algorithm [Del78,Gab85].

Definition 2. Let Fqm be the finite field with qm elements, k ≤ n ≤ m, and g =
(g1, . . . , gm) ∈ Fnqm be a vector of rank n. Then the k-dimensional Gabidulin code with
support vector g denoted by Gk(g) is

Gk(g) =

{
x
(
g
[i]
j

)k−1,n

i=0,j=1
| x ∈ Fkqm

}
,

where [i]
def
= qi

This proposition establishes that the dual of a Gabidulin code is a Gabidulin code. Namely,

Proposition 1 ([Gab85]) Let Gk(g) ⊂ Fnqm , then there exists h ∈ Fnqm of rank n such
that Gn−k(h) = Gk(g)⊥ for the usual scalar product in Fqm

3 Structure of the encryption scheme

Originally it was proposed for q = 2, but it can be declined for any q power of a prime.
Let Mm,n(A), the set of n×m-matrices with coefficients in A and GLn(Fqm), the group
of non-singular n× n-matrices over Fqm .
The parameters of OW-PKE are:

– integers k ≤ n ≤ m and λ < b(n− k)/2c;
– a finite field Fqm .

By formalizing the scheme described in [Loi17], we have the three different standard pro-
cedures:

KeyGen()

1. Construct a k-dimensional Gabidulin code G ⊂ Fnqm .
2. Pick G random in the set of generator matrices for G. A usual way to do it is to

choose a matrix under canonical form, say
(
g
[i]
j

)k−1,n

i=0,j=1
, then multiply on the left by

a randomly chosen matrix in GLk(Fqm).
3. Pick V ⊂ Fqm a randomly chosen λ-dimensional Fq-vector subspace of Fqm .
4. Pick P randomly in GLn(Fqm) ∩Mn,n(V).
5. return Gpub = GP−1, and sk = (G,P).



Suppose that p ∈ Fk2m is the plaintext to be encrypted.

Encrypt(p,Gpub)
1. Pick e ∈ Fnqm such that Rk(e) ≤ b(n− k)/2λc.
2. return c = p ·Gpub + e.

Decrypt(c,sk)
– return Decode(c ·P,G).

where Decode(∗,G) stands for any decoding algorithm for a Gabidulin code with generator
matrix G decoding up to the error-correcting capability b(n− k)/2c.
The public-key is Gpub = GP−1, where G ∈ Mk,n(Fqm) is a randomly chosen generator
matrix of G. We denote by Cpub the code generated by Gpub.
The security of the scheme is related to the difficulty of solving the two following problems:
1. Distinguish the public-code Cpub = 〈Gpub〉 from a random code.
2. Solve the Rank Bounded Distance Decoding problem for a randomly generated code

with the parameters of the scheme. This corresponds to be able to decode errors of
rank b(n− k)/(2λ)c in a k-dimensional code of length n with components in Fqm .

Our work addresses the security of the former problem. We proove that by enumerating
λ− 1 dimensional vector subspaces of F2m we recover a polynomial-time decoder for Cpub
on the given parameters. This naturally distinguishes Cpub from a random code.
The idea that we develop here is a natural extension of an original idea by Gabidulin,
Paramonov and Tretjakov in [GPT91]. They showed that masking a Gabidulin code with
a non-singular matrix P in the base field did not work. Namely, a decoder can be recovered
in polynomial-time. In our setting, their approach corresponds to choosing a vector space
V with λ = 1. For this parameter we have trivially the polynomial-time algorithm. Indeed,
this corresponds to directly solving an overdetermined linear system with at least one
solution.
More than this our work shows that the Gabidulin code itself can just be set as a parameter
(this means that the matrix G generating G can be know to everyone) without loosing
security. This would lead to a simplification of the key-generation procedure which could
be rewritten under the form

KeyGen()
– Pick V ⊂ Fqm a randomly chosen λ-dimensional Fq-vector subspace of Fqm .
– Pick P randomly in GLn(Fqm) ∩Mn,n(V).
– return Gpub = pk = GP−1, and sk = P.

4 Solving a linear system

Let r
def
= n− k. To clarify the situation we denote with a hat the datas that are known to

an attacker. From the knowledge of Cpub, an attacker can construct a parity-check matrix,

say Ĥpub ∈Mr,n(Fqm).
From proposition 1, there exists h ∈ Fnqm such that H = (h[i])r−1

i=0 is a parity-chek matrix
for G. There exists S ∈ GLr(Fqm), such that

SĤpub = HPt, (1)

Namely, HPtGt
pub = HPt(Pt)−1Gt = HGt = 0. Therefore HPt is a parity-check matrix

for Cpub. And any parity-check matrix can be obtained by a basis transformation induced
by a non-singular matrix S.
Without loss of generalities we fix α ∈ Fqm a normal element. Then

A = {α[i], i = 0, . . . ,m− 1}

is a basis of Fqm over Fq. Let us define the matrix Ĥnorm = (α[i+j−2])r,mi=1,j=1. A straight-
forward proposition is



Proposition 2 Let H = (h[i])r−1
i=0 be a parity check matrix for G under canonical form,

there exists a q-ary matrix M ∈Mm,n(Fq) of rank n such that

H = ĤnormM.

Proof. Let h = (h1, . . . , hn) be the first row of H. Then the ith column of M corresponds to
the m-dimensional q-ary vector formed by the coordinates of hi on the basis A. Moreover,
by construction of Gabidulin codes, h has maximum rank n ≤ m, therefore, M has full
rank. ut

Now equation (1) can be rewritten as

SĤpub = Ĥnorm MPt︸ ︷︷ ︸
T

. (2)

Since M is a q-ary matrix of full rank n and P ∈ GLn(V), we have that T ∈ Vm×n has
full rank n.

The following proposition shows that designing a polynomial-time decryption algorithm is
tantamount to solving a constrained linear system.

Proposition 3 Let r = n − k and Ĥpub be a parity-check matrix for Cpub. Let α ∈ Fqm
be a normal element and Ĥnorm = (α[i+j−2])r,mi=1,j=1. Let V ∈ Mr×r(Fqm), and W ∈
Mm×n(W) of rank n where W is an Fq-vector subspace of Fqm of dimension ≤ λ, such
that

VĤpub = ĤnormW. (3)

Then any ciphertext can be decrypted in polynomial time.

Proof. Recall that a ciphertext is c = p ·Gpub + e ∈ Fnqm , where Rk(e) = b(n− k)/(2λ)c.
Thus Ĥpubc

t = Ĥpube
t and

VĤpube
t = Ĥnorm Wet︸︷︷︸

e′t

Since W is ≤ λ-dimensional, this implies that and Rk(e′) ≤ λRk(e) ≤ b(n − k)/2c.
Therefore by decoding in the public Gabidulin code with parity-check matrix Ĥnorm,
one recovers e′

t
= Wet. Since W has rank n ≤ m, e 7→ Wte is one-to-one and e can

be uniquely recovered. The vector p such that p · Gpub = c − e can also be uniquely
recovered. ut

From proposition 3, to design a decryption algorithm – implying thus a distinguisher of
the public code – it is sufficient to solve the linear system (3), with

– r2 +mn unknowns over Fqm . These are the coefficients V and W,

– rn equations.

An attack would be thus to enumerate the solutions to the linear system. However, is over
Fqm and and the solution space is of dimension at least r2+(m−r)n. Therefore, an attacker
could enumerate the solutions and test the corresponding matrices W solution to check if
their coefficients lie in some small dimensional Fq-vector subspace of Fqm . Even if one takes
into account that their maybe multiple possibilities (we do not know exactly how many),
this effort lies beyond the capacities of any computer even for moderate parameters.

Moreover, this approach does not use the fact that we a priori know that M has coefficients
in a small dimensional space. This additional information is used in the next section to
improve the attack consisting in solving the linear system.



5 Rewriting the system

Let us consider system (3). We search for a matrix W whose components lie in a λ-
dimensional vector space W. Let µ1, . . . , µλ be an Fq-basis of W. Since µ1 is non-zero we
can factorize and rewrite

W = µ1W̃

Solving (3) is equivalent to solve

(µ−1
1 V)︸ ︷︷ ︸
Ṽ

Ĥpub = ĤnormW̃. (4)

where the coefficients of W̃ are now in a λ-dimensional vectorspace

W̃ = 〈1, µ2, . . . , µλ〉Fq

Therefore, without loss of generality we assume that the first element µ1 of the basis is
known equal to 1. Now let W̃ = (wij). For i = 1, . . . ,m and j = 1, . . . , n we write the
element wij on the basis 1, µ2, . . . , µλ and obtain

wij =

λ∑
`=1

b
(`)
ij µ`, b

(`)
ij ∈ Fq (5)

Let us fix an arbitrary basis B̂ of F2m/F2. For any element a ∈ Fqm we denote by a the
m-dimensional vector of its coordinates over B. And for any µ ∈ F2m we denote by Mµ

the q-ary matrix of the multiplication by µ in the basis B̂. That is

∀a, µ ∈ Fqm if b
def
= µa then b = Mµa

From now on if we state Ṽ = (vij), Ĥpub = (ĥij), and Ĥnorm = (α[i+j−2]), system (4) can
be rewritten under the form

∀
{
i ∈ {1, . . . , r}
j ∈ {1, . . . , n} ,

r∑
u=1

Mĥuj
viu =

m∑
u=1

Mα[i+u−2]wuj

Formula (5) induces the following vectorial decomposition wuj =
∑λ
`=1 b

(`)
ujµ`. Therefore

∀
{
i ∈ {1, . . . , r}
j ∈ {1, . . . , n} ,

r∑
u=1

Mĥuj
viu =

m,λ∑
u=1,`=1

b
(`)
ujMα[i+u−2]µ` (6)

6 Specializing variables

Now, system (6) has become a bilinear system where the unknowns are viu, b
(`)
uj and µ`.

An approach to solve it is to specialize the variables µ2, . . . ,µλ. They form the q-ary
representations of the elements µ2, . . . , µλ in the basis B̂. System (6) thus becomes a linear
system

– with rnm equations,
– with (λn+ r2)m unknowns.

Under the assumption that the matrix of the system looks like random, provided rn >
λn+ r2 it has a unique non-zero solution (1-dimensional vector space over Fq) with high
probability. For practical cryptographic applications we are always in this situation. The
complexity of solving the system is thus divided into two parts

– Enumerating the variables µ2, . . . ,µλ. The enumeration space has size qm(λ−1).



– Solving the linear system. This costs at least a Gaussian elimination on the matrix.
The complexity is estimated to be ((λn+ r2)m)ω arithmetical operations in Fq, where
ω is the linear algebra constant. For practical applications it is commonly admitted
that ω = 2.81.

The complexity of linear algebra can be improved. First, there is no need to consider all
the unknowns and equations to specialize the µi’s. A subsystem suffices: Let j0 ≤ n be the
smallest integer such that

rj0 ≥ λj0 + r2.

That is j0 = dr2/(r − λ)e. By truncating the system after the j0 equation, we obtain

∀
{
i ∈ {1, . . . , r}
j ∈ {1, . . . , j0}

,

r∑
u=1

Mĥuj
viu =

m,λ∑
u=1,`=1

b
(`)
ujMα[i+u−2]µ` (7)

This system is overdetermined. This gives a complexity for the linear algebra part of
((λj0 + r2)m)ω arithmetical operations in Fq.

We can even go one step further in reducing the complexity by noticing that the matrix
of the system is sparse. Namely, the equations have weight m(r + λ). If the system were
random, the weight of one equation should be on average ≈ m(r2 + λj0). This enables to
then apply Wiedemann’s algorithm [Wie86]. We lower bound the complexity by considering
the cost of inverting a sparse square matrix of size m(λj0+r2) corresponding to the number
of unknowns with a number of non-zero coefficients roughly equal to m2(r+ λ)(λj0 + r2).
An estimation of this lower bound is

m3(r + λ)(λj0 + r2)2 ≈ (mr2)3
r + λ

(r − λ)2
> m3r5

q-ary operations.
Since r = n− k, we estimate a lower bound on the complexity of solving the system to be

m3(n− k)52m(λ−1)

q-ary operations.

7 Updated parameters proposals

We update the parametres proposed in [Loi17]. In that case we have q = 2. We take into
account both the updated evaluation for the decoding of a random code in rank metric,
[BBC+20], the parameters induced by the existence of the Coggia-Couvreur attack [CC20],
and the security analysis of this paper.

m = n k λ t PK size CT size Decoding. K. Rec.

128 20 3 18 34.5 kBytes 1.8 kBytes ≈ 2180 2311

128 44 3 14 58 kBytes 1.3 kBytes ≈ 2275 2308

Table 1: Updated parameters for the OW-PKE of [Loi17]. q = 2. Decoding stands for the complexity
of the best decoding algorithms among all existing, including [BBC+20] and K. Rec. stands for the
algorithm proposed in this paper

For an equal security level, these parameters compare very favourably with LWE based
submissions and with unstructured code based submissions in Hamming metric.
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