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Abstract. New symmetric primitives intended to be run in abstract
settings such as multi-party computations are being designed to use op-
erations over large finite fields. In this work, we investigate the algebraic
degree of one of the first such block ciphers, namely MiMC. It is com-
posed of many iterations of a simple round function, which consists of
an addition and of a low-degree power permutation applied to the full
state, usually x 7→ x3 over a large field with characteristic 2. We show
that, while the univariate degree increases predictably with the number
of rounds, the algebraic degree has a much more complex behaviour, and
simply stays constant during some rounds. We present a full investiga-
tion of such plateaus that slightly slow down the growth of the algebraic
degree. Using these results, we slightly improve the higher-order differ-
ential attack presented by the authors of MiMC to cover one or two more
rounds. More importantly, our results provide some precise guarantee on
the algebraic degree of this cipher, and then on the minimal complexity
for a higher-order differential attack.

1 Introduction

New computing environments are emerging, such as smart-contracts or zero-
knowledge proofs, implementing Multi-Party Computation (MPC) protocols.
The rise of these environments creates a new need since symmetric primitives are
still needed in these contexts, in particular to ensure computation integrity [5].
However, the basic operations provided by these platforms correspond neither
to the CPU instructions (bit-wise AND, rotations, etc.) nor to the hardware
components (XNOR, wires, etc.) that are used to build symmetric primitives
in the usual case. Instead, the core operations that implementers can use are
finite-field operations over fields Fq of large size q, where q is typically bigger
than 264 and is usually either a prime number or a power of 2 [2,4]. Primitives
that are designed using such operations only are called arithmetization-friendly,
see e.g. [6] for a detailed survey on the arithmetization-friendly hash functions.

Designing arithmetization-friendly symmetric primitives is different from the
“usual” case. Instead of using operations on F2n where n is a small even inte-
ger, typically n = 4 or 8, the underlying alphabet is now a large field whose
cardinality is chosen according to some other parts in the protocol such as for



instance the underlying field of a standard elliptic curve (q ≈ 2256), or, in some
SNARK cases, a field of size q = 264. In order to optimize the multiplicative
complexity of the circuit describing the encryption, the proposed constructions
use non-linear functions but whose algebraic representations remain very simple
on a large finite field. Indeed, several such proposals have been found to have
significant flaws, from ad-hoc attacks relying on internal simplifications [1], to
integral attacks [7]. Hence, it is necessary to better understand the behaviour
of cryptanalysis techniques when they are applied to arithmetization-friendly
designs.

Univariate and Algebraic Degrees. In this paper, we investigate the algebraic
degree of an arithmetization-friendly block cipher. The complexity of so-called
higher-order differential attacks [10] decreases with the algebraic degree, imply-
ing that it is important to understand how this quantity increases as a given
round function is iterated. Let us first recall the two notions of degree which
apply to a function over a finite field with characteristic 2.

Definition 1 (ANF and Algebraic Degree). Let f : Fn
2 → F2 be a Boolean

function. Its Algebraic Normal Form (ANF) is the representation of f as a mul-
tivariate polynomial with variables in Fn

2 , so that f(x0, ..., xn−1) =
∑

u∈Fn
2
aux

u ,

where au ∈ F2 for all u, and xu =
∏n−1

i=0 x
ui
i .

The algebraic degree of f is degaf = max
{

wt(u) : u ∈ Fn
2 , au 6= 0

}
, where

wt(u) is the Hamming weight of u. If F : Fn
2 → Fm

2 , then its algebraic degree,
degaF , is the maximal algebraic degree of the coordinates of F .

Definition 2 (Univariate Representation and Degree). Let q > 1 be a
prime power and let F be a function from Fq to Fq. Then the univariate poly-

nomial representation of F is F (x) =
∑q−1

i=0 uix
i , where ui ∈ Fq for all integers

i. Its univariate degree deguF is the largest integer i for which ui 6= 0.

If q = 2n, then a function F : Fq → Fq can be seen both as a function defined
over the finite field, and as a function defined over the vector space Fn

2 using a
simple isomorphism between Fn

2 to F2n . For such a function, the algebraic degree
is related to the univariate representation as follows: degaF = max{wt(i) :
i ∈ N, ui 6= 0} , where {ui}i≥0 is the set of all coefficients in the univariate
representation of F .

Our Target. In this paper, we focus on the block cipher MiMC, introduced
by Albrecht et al. [3], which operates on F2n . It consists of r iterations of an
extremely simple round function: round i, 0 ≤ i < r, corresponds to x 7→ xd +
ci+1, where d is coprime with (2n−1) in order to ensure that the round function
is bijective, and where c = (c1, . . . , cr) is a sequence of r round constants. As
a consequence, the round function of a MiMC instance is fully specified by the
exponent d and by the sequence c of all round constants, and we denote such
a MiMC instance MIMCd,c[r]. It is worth noting that the key is omitted in
this description: indeed, as far as the algebraic degree is concerned, it can be
considered to be part of the round constants.
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Fig. 1. MIMCd,c with r rounds.

More precisely, our aim is to investigate the security of MiMC against inte-
gral attacks, and thus its algebraic degree. Let (Br

d)r>0 denote the sequence of
the maximal degree of r rounds of MIMCd, i.e., for any r, Br

d is the degree of
MIMCd,c[r] for at least one sequence c = (c1, . . . , cr) of constants:

Br
d := max

c
degaMIMCd,c[r] .

It may happen that this degree is not reached for some specific sets of round
constants as we will point out in Sec. 5, hence the need to take the maximum over
them. Our goal is then to find the exact value of Br

d. Indeed, a (very expensive)
attack on MIMC3 has been exhibited in [9], exploiting the fact that the number
of rounds proposed by the designers is not sufficient for achieving a maximal
algebraic degree. However, this weakness is based on a simple upper-bound on
Br

d and any gap between this bound and the exact value of the degree would
decrease the complexity of the attack (or increase the number of rounds covered
for a given complexity). Our aim is therefore to determine the exact value of
Br

d, or equivalently the minimal complexity of any attack based on higher-order
differentials as in [9].

A First Observation. A pattern of particular interest to us is what we call a
plateau. To understand what it corresponds to, let us consider a simple example.
For any input x, the output of the composition of the first two rounds is

(x3 + c1)3 + c2 = x9 + c1x
6 + c21x

3 + c31 + c2 . (1)

We deduce that this composition is quadratic as its algebraic degree is equal
to max {wt(i), i ∈ {0, 3, 6, 9}} = 2. It is counter-intuitive: we would expect the
algebraic degree to increase when a non-affine function is iterated.

Definition 3 (Plateau). We say that there is a plateau whenever Br
d = Br−1

d .

Since (Br
d)r≥1 is a non-decreasing sequence as proved later in Prop. 2, the exis-

tence and the frequency of plateaus are the most relevant elements when esti-
mating the degree of MIMCd after a large number of rounds.

Outline. Our work aims to provide a better understanding of these plateaus, first
to identify them, and then to exploit them. In Sec. 2, we derive a simple method
to generate the set of all exponents appearing in the univariate representation
of MIMC3,c[r] (Prop. 1). Then, we bound the algebraic degree of MIMC3,c[r] in
Sec. 3, and identify in Sec. 4 a sequence of exponents that reach the upper bound.
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We then perform a similar analysis of two ciphers closely related to MIMC3,c[r],
namely its inverse and MIMC9,c[r] (Sec. 5). Finally, in Sec. 6, we use our results
on the algebraic degree of MIMC3,c[r] to determine the best possible integral at-
tacks, which slightly improve the first attacks presented by the designers in [9].

For the sake of compactness, the proofs are left out of this extended abstract.

2 Quantifying the Evolution of the Univariate Degree

In this section, we present a process that generates the set of all the exponents
appearing in the univariate form of r rounds of MIMCd (Prop. 1).

Recall that MIMCd,c corresponds to the composition Fr−1 ◦ . . . ◦ F0 where
for any i, 0 ≤ i < r, Fi : F2n → F2n , x 7→ xd ⊕ ci+1, and the ci+1 ∈ F2n are
arbitrary constants. Then, for the successive values of r, it is possible to recur-
sively determine the list of monomials appearing in the univariate polynomial
representing MIMCd,c[r] for some c.

Proposition 1. Let n and d < 2n−1 be two positive integers such that gcd(d, 2n−
1) = 1. Let Er be the set of the exponents of all monomials appearing in the uni-
variate polynomial MIMCd,c[r] over F2n for at least one sequence c. Then, we
have:

Er = {dj mod (2n − 1) where j � i, i ∈ Er−1} ,

where, for x and y in Fn
2 , y � x means that yi ≤ xi for all i.

The maximum algebraic degree after r rounds, Br
d, is then the maximal weight

of the elements in Er. In particular, we have the following.

Proposition 2. For any integer d, (Br
d)r≥1 is a non-decreasing sequence. More-

over, when d is odd, we have Er−1 ⊆ Er, for all r ≥ 1.

By investigating exponents of Er, we can, for example, prove that there is
always such a plateau between the first and second rounds for all d of the form
d = 2k − 1 for some k.

Proposition 3. Let F : x 7→ xd be a permutation of F2n where d = 2k − 1, and
gcd(k, n) = 1, and let c be an arbitrary constant. Then, if d2 < 2n − 1, we have:

dega((xd + c)d) = dega(F ) .

Therefore, there is a plateau during the first two rounds, and actually, some
other ones can be observed in the following rounds of MIMC3, as seen on Figure 2
where we compare our result with the bound given in [9].

3 Bounding the Algebraic Degree of MIMC3

We now mainly focus on the algebraic degree of MIMC3 over F2n , i.e., on
the value of Br

3 . We also focus on the situation where the univariate degree of
MIMC3[r] does not exceed (2n−1). Therefore, we implicitely assume in the rest of
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Fig. 2. Comparison of our result with previous work.

the paper that n > blog2(3r)c. In this situation, the algebraic degree of r rounds
of MIMC3 is upper-bounded by dlog2(3r)e = dr log2 3e, as observed in [9]. But
this bound can be improved by showing that some exponents are missing in Er.

Lemma 1. Let Er be the set of exponents in the univariate form of MIMC3[r],
as defined in Prop. 1. Then, any i ∈ Er satisfies

i mod 8 6∈ {5, 7} .

Proposition 4. Let kr = br log2 3c. For any r ≥ 4, the algebraic degree after r
rounds of MIMC3 satisfies

Br
3 ≤ 2× dkr/2− 1e .

Besides, if the univariate degree 3r is lower than 2n − 1, then the monomial
x3

r

appears in the polynomial. Since its coefficient is always 1, independently of
the choice of the constants, this monomial never vanishes. This defines a trivial
lower bound for Br

3 :

wt(3r) ≤ Br
3 ≤ 2× dkr/2− 1e .

4 Exact Degree of MIMC3

In this section, we show the tightness of the previously established bound.
At this aim, we investigate the following conjecture, which exhibits a sequence
of exponents in the univariate polynomial MIMC3,c[r] for some c.

In what follows, (kr)r>0 and (br)r>0 denote two sequences defined by

kr = br log2 3c and br = kr mod 2 .
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Conjecture 1. Let (ωr)r>0 be the sequence of integers defined by

ωr = 2kr − αbr , where αbr =

{
7 if br = 0

5 if br = 1 .

Then, for all r > 0, it holds that ωr ∈ Er.

While the most general case remains a conjecture at the time of writing, we
show that the conjecture is true for all r < 16265, except for a few sporadic cases
for which a proof still remains out of reach.

Theorem 1. Conjecture 1 holds for all r ∈ {4, ..., 16265} except maybe the val-
ues r ∈ F , where

F =
(
(359 +R) ∪ (665 +R) ∪ (718 +R)

)
\V

with R = {665λ+ 53µ, 0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5}
V = {359, 412, 518, 624, 665} .

To prove this theorem, we first need to investigate the sequence (kr)r>0.

Proposition 5. Let r ≥ 3, and let (sr)r>0 be the sequence of the switches from
one parity to another for (kr)r>0, i.e. s1 = 0 and sr = br ⊕ br−1. Then there
exists 1 ≤ ` < r such that

kr − kr−` = k`

if and only if (s1 . . . sr) is not a palindrome, i.e. if there exists i, 0 ≤ i < r such
that sr−i 6= si+1 .

Then, we use two ingredients allowing us to show that ωr ∈ Er. The first is
MILP-based and computationnally intensive. The second is an inductive algo-
rithm establishing that ωr ∈ Er using the knowledge that ωr−` ∈ Er−` for some
` < r, such that Prop. 5 is satisfied. (see Fig. 3).

22k−10 − 7

22k−9 − 5

22k−7 − 5

22k−6 − 7

22k−4 − 7

22k−3 − 5

22k−1 − 5

22k+1 − 5

r − 7

r − 6

r − 5

r − 4

r − 3

r − 2

r − 1

r

Fig. 3. Some steps of our inductive algorithm.

Although this second algorithm is more efficient than establishing the pres-
ence of exponents with the MILP-based algorithm for each round, we have iden-
tified two situations for which we need the MILP solver: when we have a palin-
dromic sequence of (si), or when the value of ` satisfying Prop. 5 is too large. It
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follows that, with the MILP solver, Conjecture 1 can be proved for several more
rounds. However, there are still some rounds that cannot be reached either by
the recursive algorithm or by the MILP solver since the cost becomes too high
to obtain a result.

Finally, we put together these results and algorithms using computer-assisted
steps, to prove Theorem 1. Even if this method does not cover all the rounds,
the number of rounds of MIMC3 we are interested in is largely covered (' 80).

As a consequence, we deduce the following corollary for Prop. 4.

Corollary 1. Let R = {4, ..., 16265} \ F . For any r ∈ R, the algebraic degree
after r rounds of MIMC3 satisfies:

Br
3 = 2× dkr/2− 1e .

We derive from Cor. 1 that there is a plateau between rounds r and r+ 1 when
kr is odd and kr+1 is even. Moreover, let r ∈ R s.t. Br

3 = Br+1
3 , we can also

show that the next plateau is either Br+4
3 = Br+5

3 or Br+5
3 = Br+6

3 .
It is worth noting that, for the sporadic cases r ∈ F , we have both the upper

bound of Prop. 4 and a lower bound derived from the fact that (Br
d)r≥1 is a non-

decreasing sequence (Prop. 2). In most cases, there is a very small gap between
the two values, e.g.

734 = B464
3 ≤ B465

3 ≤ 736 , 902 = B570
3 ≤ B571

3 ≤ 904 .

5 Generalization to Other Permutations

5.1 Degree of MIMC9 and the coefficients form

The set of exponents given by Er is not always minimal, because the monomi-
als coefficients can be cancelled for some constants choices, and this could cause
the degree to drop at some rounds. The influence of the monomials coefficients
can be observed for instance by comparing the algebraic degree of the transfor-
mation describing MIMC9 and the one describing MIMC3. Indeed, using x9, as
a round function, is equivalent to using x3 with one constant out of two being
equal to zero. On Fig. 4, we can thus see that the algebraic degree at round r
for MIMC9 is not always the algebraic degree at round 2r for MIMC3.

Besides, we have already shown in Sec. 3 that for MIMC3, the exponents
equal to 5 and 7 modulo 8 are missing. For MIMCd, where d = 2j + 1 we have:

Proposition 6. Let Er be the set of exponents in the univariate form of MIMCd[r],
where d = 2j + 1. Then, any i ∈ Er satisfies: i mod 2j ∈ {0, 1} .

5.2 On the algebraic degree of MIMC−1
3

We also study the algebraic degree of the inverse transformation. MIMC−13

is obtained by reversing the order of the round constants and by replacing the
round function by F−1(x) = xs where s = (2n+1 − 1)/3 (see e.g. [11, Prop. 5]).
We first exhibit the following behavior, which can be observed on Fig. 5.
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3 .

Proposition 7. There is a plateau between the first two rounds of MIMC−13 :

B1
s = B2

s =
n+ 1

2
.

Since the algebraic degree is already high in the first round, this plateau is
counter-intuitive, and we explain this behavior by bounding the Hamming weight
of the exponents js mod 2n − 1. In Sec. 2, we have also proved that B1

d = B2
d,

when d = 2k − 1. However, a similar plateau does not always exist for MIMC−1d ,
as observed for instance when (n, d) = (11, 15).

Moreover, we also try to explain the large plateaus that increase with the size
of the field on the last rounds. The degree of the round function being higher
than x3, studying the algebraic degree of MIMC−13 over the iterations is much
more difficult. In [8] the authors show how the encryption degree influences the
decryption degree, so that we can deduce the following corollary.

Corollary 2. Let rn−i be the first round of MIMC−13 where the algebraic degree
reaches n− i. Then, we have:

rn−i ≥
⌈

1

log2 3

(
2

⌈⌈
n− 1

i

⌉
/2− 1

⌉
+ 3

)⌉
.
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So in particular:

rn−2 ≥
⌈

1

log2 3

(
2

⌈
n− 5

4

⌉
+ 3

)⌉
.

6 Higher-order Differential Attacks

Finally, we use our study of the algebraic degree to improve integral attacks
presented in [9] and determine their best possible variants. High-order differential
attacks exploit the low algebraic degree of a construction. Indeed, if the degree
is sufficiently low then we can construct a 0-sum, using that

⊕
x∈V F (x) = 0 for

any affine subspace V ⊂ F2n , such that dimV ≥ dega(F ) + 1.
Since a randomly selected permutation on Fn

2 has maximum degree n − 1
with a very high propability, an iterated cipher needs to reach the maximal
algebraic degree in order to be indistinguishable from a random permutation.
Besides we can also extend this distinguisher to a key-recovery attack using the
rounds which are not covered by the 0-sum.

In Tab. 1, we compare our results with those by Eichlseder et al. [9] using the
same notation: “KR” for Key-Recovery, “KK” for Known-Key distinguisher, and
“SK” for Secret-Key distinguisher. Rather than proposing a new attack strategy,
we show instead that their attack can cover one or two more rounds, thanks to
our more precise evaluation of the algebraic degree. And we also derive from our
results that our improved secret-key distinguishers are optimal in the sense that
no such distinguisher based on the algebraic degree of the cipher can cover more
rounds.

Type n Rounds Time Data Source

SK

129 80 2128xor 2128
[9]

n dlog3(2
n−1 − 1)e − 1 2n−1xor 2n−1

129 81 2128xor 2128
New

n dlog3 2ne − 1 2n−1xor 2n−1

129 81 (MIMC3) 2127xor 2127
New

n dlog3 2ne − 1 (MIMC3) 2n−2xor 2n−2

129 80 (MIMC3) 2125xor 2125
New

n dlog3 2ne − 2 (MIMC3) 2n−2 or 2n−4xor 2n−2 or 2n−4

KK

129 160 - 2128
[9]

n 2 · dlog3(2
n−1 − 1)e − 2 - 2n−1

129 162 - 2128
New

n 2 · dlog3 2ne − 2 - 2n−1

KR

129 82 2122.64 2128

[9]
n dn · log3 2e 2n−1−(log2dn log3 2e)

2n−1

or 2n−(log2dn log3 2e)

129 82 2121.64 2128
New

n dn · log3 2e 2n−1−(log2dn log3 2e) 2n−1

Table 1. Complexity of attacks on MIMC3.
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