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Abstract. Recently, the use of algorithmic problems over nonabelian groups was proposed for con-
structing quantum-secure cryptosystems. The most prominent such problem is the Conjugacy Search
Problem (CSP), which requires the recovery of a conjugator x ∈ G, given g and h = x−1gx. The best
known protocols constructed based on the CSP are by Anshel, Anshel and Goldfeld, and Ko–Lee. The
authors of these systems proposed as platforms the Braid groups, which were subsequently shown to
be insecure. Thus, the search for a suitable nonabelian platform group is an active area of research.
However, several existing attacks on nonabelian systems are protocol-specific, and focus on retrieving
the private key without solving the CSP. So far, the true difficulty of the CSP in different platform
groups has not been sufficiently investigated. In this paper, we study the CSP in some popularly pro-
posed nonabelian platforms: some special polycyclic groups, extraspecial p-groups, and matrix groups
over finite fields.
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1 Introduction

The construction and realization of cryptographic systems that resist quantum attacks presently constitutes
an important area of research. Apart from lattice-based, multivariate, and code-based cryptography, it
has been proposed recently to use the rich structure of nonabelian groups to construct quantum-secure
protocols for public key exchange, message encryption, and authentication. Some recent surveys on this
broad, emerging field, called group-based cryptography, can be found in [27] and [8].

The most prominent algorithmic problem employed for constructing nonabelian protocols has been the
Conjugacy Search Problem (henceforth referred to as the CSP). While the Discrete Logarithm Problem
(henceforth referred to as the DLP) in a group G requires the recovery of the exponent n when given the
group elements g and h = gn, the CSP requires the recovery of a conjugator x ∈ G, given the elements g
and h = x−1gx. To reflect this analogy, it is common to use the notation gx := x−1gx for g, x ∈ G, which
we also adopt in this paper. If the conjugator is restricted to lie in a subgroup A ⊆ G, we refer to the
problem as an A-restricted CSP, and more generally as a restricted CSP. Some problems similar to the CSP
have also been proposed for use, for example, see [31], [2], [13], and [30]. However, this paper is majorly
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concerned with the CSP. We note that conjugation is an action of a group on itself, and thus CSP-based
protocols may be seen as special cases of the semigroup action-based construction in [22].

The first protocols constructed based on the CSP were by Anshel, Anshel and Goldfeld [1], and Ko–Lee
[19]. The authors of both these systems proposed for use the Braid groups BN . However, a number of
attacks [15], [26], [33] show that the Braid groups are not suitable platforms. Nevertheless, the possibility
of finding another nonabelian group that could serve as a platform for CSP-based protocols is still open.
Some other popular nonabelian groups that have been proposed as cryptographic platforms are polycyclic
groups, metabelian groups, some p-groups, Thompson groups, and matrix groups.

Attacks on other nonabelian protocols using different platforms have also been developed: several protocols
have been cryptanalysed using polynomial time linear algebra attacks, for example, in [20], [25], [33], and
[3]. However, many of these attacks are impractical to implement for standard parameter values, despite
being polynomial time. Further, even though the linearity of a platform group renders a system vulnerable
to these attacks, the computation of a linear representation may pose a serious roadblock for an adversary.

More importantly, such attacks are also typically protocol-specific, and focus on retrieving the private key
without solving the CSP in the group. This always leaves open the possibility of constructing a different
protocol, again based on the CSP, where the known attacks are avoided. So far, the true difficulty of the CSP
in different platform groups has not been sufficiently investigated. In order to develop a cryptosystem based
on the CSP, it is necessary to rule out platforms where there is a polynomial time solution or reduction to
other known problems.

In this paper, we explore the CSP in three categories of groups: polycyclic groups with two generators
(which we call 2-PC groups), extraspecial p-groups, and matrix groups over finite fields. More precisely,
we show a reduction to one or more DLP’s in the cases of finite 2-PC groups and a special case of the
CSP in matrix groups. For extraspecial p-groups, we show that the CSP has a polynomial time solution,
by reducing it to a set of linear modular equations. Thus, while in full generality, the CSP seems to be a
promising non-commutative replacement for the DLP, it seems to offer no novel security feature in several
types of platforms and protocols. The algebraic reductions demonstrated in this paper may also prove useful
in future cryptanalysis techniques for nonabelian protocols over different platform groups.

Throughout, polynomial time algorithm in a group G refers to an algorithm with time complexity O(log|G|).
Many of the polynomial time algorithms referred to are, in fact, constant time, but we do not emphasize
this fact or the exact complexities, since our primary goal is to rule out unsuitable platforms. We use terms
like “X is difficult to compute” to mean that the best-known algorithms for computing X are exponential.

2 Polycyclic Groups

In [7], polycyclic groups were suggested as a potential platform for CSP-based cryptography. A survey of
polycyclic group-based cryptography can be found in [12]. In this section, we demonstrate that if a 2-PC
group G is finite, the CSP is at most as hard as a DLP, whereas the restricted CSP can be designed to be
exactly equivalent to a DLP. We illustrate what the restricted CSP in some other special polycyclic groups
looks like. We show also that in some specific polycyclic platforms like the generalized quaternion group,
there is a reduction of the CSP and the decomposition problem ([30]) to a set of linear modular equations.
We use this method to crytpanalyse the system in [32].

Definition 1 (Polycyclic Group). Let G be a group with generators a1, a2, . . . , an. Let I ⊆ {1, 2, . . . , n}
denote a list of indices and mi > 1 be integers corresponding to elements i ∈ I. G is polycyclic if and only
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if it has a presentation of the form

G = 〈a1, a2, . . . , an |ami
i = wii (i ∈ I), aai

j = wij (1 ≤ i < j ≤ n), a
a−1
i

j = w−ij (i < j, i 6∈ I)〉, (1)

where wij = a
l(i,j,|i|+1)
|i|+1 . . . a

l(i,j,n)
n , with l(i, j, k) ∈ Z, and 0 ≤ l(i, j, k) < mk if k ∈ I. Here |i| denotes the

absolute value of the integer i.

We will refer to a polycyclic group with n generators as n-polycyclic or n-PC. Define Gi = 〈ai, ai+1 . . . an〉,
1 ≤ i < n, Gn+1 = 〈1〉. The presentation in (1) is called consistent if |Gi/Gi+1| = mi whenever i ∈ I, and
Gi/Gi+1 is infinite whenever i 6∈ I.

Definition 2 (Normal Form). Given a consistent polycyclic presentation (1) for a group G, every element
a of G can be represented uniquely in the form a = ae11 a

e2
2 . . . aenn , where ei ∈ Z, 0 ≤ ei < mi for i ∈ I.

Given a word w in the generators a1, a2, . . . , an of G, there exists an algorithm, called a collection algorithm,
to convert w into normal form. Many different strategies for this process have been suggested, but the
best-known performance in most cases is achieved by the Collection from the Left Algorithm [36], and its
improvement in [10].

2.1 CSP in 2-PC groups

We consider the case n = 2, where we have two generators x1 and x2 with relations x−11 x2x1 = xL2
and x1x2x

−1
1 = xD2 (the second is redundant if and only if x1 has finite order, in which case we have

D = Lord(x1)−1). If some nonzero power xC1 of x1 lies in 〈x2〉, then we have a relation of the form xC1 = xE2 .
If x1 has infinite order (mod 〈x2〉) for simplicity we nevertheless retain this relation with C = E = 0. Thus
for parameters C,L,D,E ∈ Z, L,D 6= 0, the group presentation is

〈x1, x2 | xC1 = xE2 , x
x1
2 = xL2 , x

x1
−1

2 = xD2 〉 (2)

Throughout, we will write N2 = ord(x2), which is allowed to be infinite. If N2 is finite then gcd(L,N2) = 1,

since if not, writing L′ = gcd(L,N2) 6= 1, we have x−11 x
N2/L

′

2 x1 = 1, or x
N2/L

′

2 = 1, a contradiction.

The main results of this section are as follows.

Lemma 1. The conjugated word (xc1x
d
2)−1(xa1x

b
2)(xc1x

d
2) can be collected to xg1x

h
2 with g = a and

h =


−dLa + bLc + d; if c, a ≥ 0

−dLa + bD−c + d; if c < 0, a ≥ 0

−dD−a + bLc + d; if c ≥ 0, a < 0

−dD−a + bD−c + d; if c, a < 0

Theorem 1. If N2 = ord(x2) is finite, the CSP has a polynomial time solution in G2.

Proof. Suppose that we are given an instance of the CSP, i.e. the equation (xc1x
d
2)−1(xa1x

b
2)(xc1x

d
2) = xe1x

f
2 ,

where we want to solve the for unknowns c and d. Then, from Lemma 1, a = e mod C and the CSP is
reduced to solving a modular equation for unknowns c and d.
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If a ≥ 0, we have f + d(La − 1) = bLc, or f + d(La − 1) = bD−c. Writing b1 = gcd(b,N2), we see that
a solution for Lc (resp D−c) exists if and only if d(La − 1) = −f mod b1. Writing a1 = gcd(b1, L

a − 1),
a solution d for d(La − 1) = −f mod b1 exists if and only if a1 | f . By construction, a solution (c, d)
exists, so both these conditions are satisfied. Further, a solution d to d(La − 1) = −f mod b1 is given by
d = −(f/a1)((La − 1)/a1)−1 mod b1/a1. Write d = −(f/a1)((La − 1)/a1)−1 + Mb1/a1 for some M ∈ Z
which we may choose. Then, the following equalities hold mod N2

M(La − 1)/a1 = (f + d(La − 1))/b1 =

{
(b/b1)Lc, c ≥ 0

(b/b1)D−c, c < 0
.

Writing A = (b/b1)−1((La − 1))/a1 (clearly gcd(A,N2) = 1), we may take M = A−1 mod N2, so that a
solution is given by c = 0. Then d = (La − 1/a1)−1(−f + b)/a1)).

Similarly, a solution can be obtained for the case a < 0. Thus, in both cases, a solution of the CSP involves
a fixed number of applications of the Euclidean algorithm, and so has polynomial time complexity.

Remark 1. If N2 = ∞, then the CSP in G2 reduces to an exponential Diophantine integer equation f =
−dLa + bLc + d which possesses at least one solution. There is no known standard technique for solving
such equations, and trial and error would perhaps be the best method (for a general reference see [29]).

Theorem 2. If N2 = ord(x2) is finite, the 〈x1〉-restricted CSP in G2 reduces to a DLP. Further, the
elements can be chosen so that it is exactly equivalent to a DLP mod N2.

Observe that the example of 2-PC groups demonstrates that a well-chosen restricted CSP can be notably
more complex than the regular CSP. This complexity may grow with the number of generators, as suggested
by the following special cases.

2.2 Cases of the CSP in some other polycyclic groups

Proposition 1. Consider the 3-PC group 〈s, t1, t2〉. Let θi be the order of ti for i = 1, 2. Write s−1t1s =

t
a
(1)
1

1 t
a
(1)
2

2 , s−1t2s = t
a
(2)
1

1 t
a
(2)
2

2 . Then we have s−itA1 t
B
2 s

i = tAi
1 tBi

2 where (A0, B0) = (A,B) and for i ≥ 0

(Ai+1, Bi+1) =

(
a
(1)
1 Ai + a

(2)
1 Bi (mod θ1), a

(1)
2 LAia

(2)
1
LAia

(1)
1 − 1

La
(1)
1 − 1

+ a
(2)
2

LBia
(2)
1 − 1

La
(2)
1 − 1

(mod θ2)

)
.

Thus, the 〈s〉-restricted conjugation action on 〈t1, t2〉 can be described as a recurrence relation in Z/θ1Z×
Z/θ2Z. Solving this restricted CSP constitutes finding N from the N th terms of this recurrence relation.

Proposition 2. Consider the (n+ 1)-PC group 〈s, t1, . . . tn〉 where T := 〈t1, . . . tn〉 is abelian. Representing
the elements of T as column vectors (r1 . . . , rm), we can describe the conjugation action of s on T by the
linear map

Zo1 × Zo2 × . . .× Zom → Zo1 × Zo2 × . . .× Zom

(r1, . . . , rm)→


a
(1)
1 . . . a

(m)
1

a
(1)
2 . . . a

(m)
2

... · · ·
...

a
(1)
m . . . a

(m)
m

 ·

r1
r2
...
rm


Here, the restricted CSP constitutes recovering N from the N th power of the above matrix.
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Note that the above problem is not the same as the matrix group DLP because the entries of each column
actually lie in separate groups.

2.3 Using matrix representations of polycyclic groups

It is known that every polycyclic group is linear, and thus embeds faithfully into a matrix group over some
field. This subsection discusses the possibility of disguising the polycyclic group structure with matrices
for use in cryptosystems. In this scenario, the adversary who wants to solve the CSP is faced with the
additional problem: given the public matrix generators M1, . . . ,Mn, the public base matrix X, and a public
key matrix Y (which represents A−1XA), find exponents (i1, . . . , in), (j1, . . . , jn) such thatX = M i1

1 . . .M in
n ,

Y = M j1
1 . . .M jn

n . Once this is done, the problem reduces back to finding the conjugator in the words of the
group G.

Such a problem has been discussed in [18], and is called the Generalized Discrete Logarithm Problem
(GDLP). It is not known whether a general square root attack exists for the GDLP in any finite group. The
thesis [16] discusses some square-root type algorithms for finite matrix groups. However, in a 2-PC group,
represented by generator matrices Mx and My, the adversary must solve the GDLP in two variables to
obtain back the group presentation version of the problem. Square root algorithms solving this case of the
GDLP have been discussed in [24] and [17] reducing it to at most two DLP’s over a matrix group. In [23],
it was shown that the DLP over GLr(Fq) reduces to a DLP over a small extension of Fq. Therefore, while
the overall security of the protocol may be enhanced, introducing the matrix representation does not offer
any novel security feature.

2.4 Examples

Generalized Quaternion Groups A generalized quaternion group is given by the presentation

Q2n = 〈x, y | xN = 1, y2 = xN/2, yx = x−1y,N = 2n−1〉. (3)

Writing y = x1, x = x2, we have the relations x21 = x
N/2
2 , xx1

2 = x−12 . So, these groups are (finite) polycyclic.
Clearly, any element in this group has a normal form xiyj , where 0 ≤ i ≤ N , 0 ≤ j ≤ 1.

For an instance of the CSP (xiy)−1(xay)(xiy) = xAy the exponent i is easily seen to be found by solving
the modular equation 2i − a + N/2 = A mod N . Note that (xiy)−1(xa)(xiy) = y−1xay = x−a, so in this
case any value of i is a valid solution. In fact, the same method can be used to solve problems related to the
CSP, such as the decomposition problem, introduced in [30]. Given a,A, b and B, solving the decomposition
problem (xiyj)(xayb)(xkyl) = xAyB for i, j, k, l ∈ Z in Q2n reduces to solving the following set of linear
modular equations for i, j, k, l :

i+ (−1)ja+ (−1)j+bk = A mod N

j + l = B − b mod 2,

which, in turn, can be done in polynomial time.

In [32], a key exchange protocol based on the group Q2n was proposed, based on a problem that the authors
call complete decomposition problem. This is similar to the decomposition problem in [30], but the base
word a is kept secret. However, the same method reduces the key retrieval to a set of linear equations.

Proposition 3. Retrieving the secret keys in the protocol of [32] reduces to solving a system of six linear
equations in six unknowns over ZN , N ∈ Z and thus can be done in polynomial time.
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Matrix Representations of Quaternions In groups like Q2n , it is easy to see that disguising the elements
as matrices simply introduces a single DLP into the security of the protocol. Suppose that the elements x
and y correspond respectively to invertible matrices Mx and My in GLr(Fq). The adversary sees matrices
of the form A = M i

xMy, However, since My is known, the exponent i can be recovered by solving the DLP
AM−1y = M i

x.

Holomorphs of cyclic groups Let G be the holomorph G = Cp o Aut(Cp) of a cyclic group of prime
order, where each element in Cp = 〈g〉 is represented as gn, n ∈ Z. We have Aut(Cp) ≡ Z×p , which is also
cyclic. Thus, Hol(G) is a 2-PC group. The action of Z×p on Cp is written as a conjugation, and given by

k−1hik = hik, k ∈ Z×p , i ∈ Z. Given elements g1 = hlk1, g2 = hnk2 in G, to solve the CSP we have to

find g = hmk such that g−1g1g = g2. It may be verified that (hmk)−1(hlk1)(hmk) simplifies to hW k1 with
W = k((−m + l) + mk−11 ) mod p. Thus, one needs to solve n = k((k1

−1 − 1)m + l) mod p for m and k,
which is doable in polynomial time.

3 p-Groups

A finite group with order a power of a prime p is called a p-group. Among these, some interesting and well-
studied (overlapping) subclasses are the special, extraspecial, and Miller p-groups. Since p-groups constitute
a vast and important class of nonabelian groups, and often form building blocks for other nonabelian groups,
it is worth examining the difficulty of the CSP in them. In fact, some authors have already proposed them as
potential platforms for cryptography. For example, in [14], authentication and signature schemes using the
CSP were proposed, and p-Miller groups were suggested as platforms. In [21] automorphisms of extraspecial
p-groups were used.

Several p-groups are constructed by combining smaller p-groups by taking direct, semidirect and central
products (see, for example, [4], [6]). While it is clear that given a direct product G = H ×K, an instance
of the CSP in G reduces to two separate instances of the CSP in H and K, we show similar reductions
for some special central products. We use these to show that the CSP in any extraspecial p-group has a
polynomial time solution. These results also demonstrate that while considering a group for a CSP-based
system, care must be taken to ensure that an easy decomposition as a central product is not possible.

3.1 Central products

Definition 3. A group G is said to be a central product of its subgroups H and K if every element g ∈ G
can be written as hk, with h ∈ H, k ∈ K (i.e. G = HK), and we have hk = kh ∀ h ∈ H, k ∈ K.

For a subset S and an element x of a group G we use the notations xS := {xz | z ∈ S} and Sx := {zx |
z ∈ S}. For any x ∈ G, denote by Cx := {g−1xg | g ∈ G} the conjugacy class of x. For subsets S1 and S2,
the product S1S2 denotes the set {s1s2 | s1 ∈ S1, s2 ∈ S2}. We introduce the following property, which is
relevant to central products and the CSP.

Definition 4. A group G is said to be efficiently C-decomposable if for any elements h, k, x, y ∈ G with
hCx ∩ kCy 6= ∅, an element of hCx ∩ kCy can be found in polynomial time.

Theorem 3. Let G be an efficiently C-decomposable group and H and K be subgroups of G such that G
is the central product of H and K. Then, solving the CSP in G is polynomial time reducible to solving two
separate CSP’s in H and K.
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3.2 CSP in extraspecial p-groups

Definition 5 (Extraspecial p-group). A p-group G is called extraspecial if its center Z(G) is cyclic of
order p, and the quotient G/Z(G) is a non-trivial elementary abelian p-group.

Throughout this section, Cp denotes the cyclic group of order p, and AoB denotes the semidirect product
of groups A and B. It is well-known that here are precisely two isomorphism classes for the extraspecial
group of order p3: M(p) = Cp2 o Cp and N(p) = (Cp × Cp) o Cp, where the latter may be represented
as triangular matrices over the finite field of order p, with 1’s on the diagonal. Further, every extraspecial
p-group has order p1+2n for some positive integer n, and conversely for each such number there are exactly
two extraspecial groups up to isomorphism. Every extraspecial group of order p1+2n can be written as a
central product of either n copies of M(p) or n−1 copies of M(p) and 1 copy of N(p). A standard reference
for these results is [11]. Further, a central product decomposition of any extraspecial p-group is computable
in polynomial time by the result in [37].

It is well known (refer, for example, to [5]) that M(p) and N(p) have the following presentations:

M(p) = 〈x, y | xp
2

= 1, yp = 1, yxy−1 = x1+p〉
N(p) = 〈x, y, z | xp = yp = zp = 1, xy = yx, yz = zy, zxz−1 = xy−1〉.

The following results demonstrate solutions for the CSP in M(p) and N(p).

Lemma 2. Two elements g = xayb and g′ = xAyB in M(p) are conjugates if and only if a = A mod p
and B = b mod p. In this case, a conjugator h = xiyj such that g′ = h−1gh can be found by solving
(A− a)/p = (aj − ib) mod p. Consequently, the CSP has a polynomial time solution in M(p).

Lemma 3. Two elements g = xaybzc and g′ = xAyBzC in N(p) are conjugate if and only if a = A mod p
and C = c mod p. In this case, h = xiyjzk is a conjugator such that g′ = h−1gh if and only if (i, k) satisfies
B − b = −ka+ ic. Consequently, the CSP has a polynomial time solution in N(p).

Proposition 4. Any central product G of finitely many copies of N(p) and M(p) is efficiently C-decomposable.

As a direct consequence of the above results, we have below the main result of this section.

Theorem 4. The CSP in an extraspecial p-group has a polynomial time solution.

4 Matrix Groups

Throughout this section, we use q to denote a power of a prime p.

Matrix groups over finite fields have played an important role in cryptography. In [23] and [9], the DLP
over the matrix group GLn(Fq) was studied and shown to be no more difficult than the discrete logarithm
problem over a small extension of Fq, and in fact, less efficient in terms of key sizes for the same security
level. In this section, we study the CSP in Matn(Fq) in the special case when the conjugator is known to lie
in a cyclic subgroup of GLn(Fq). More precisely, suppose that X ∈Matn(Fq) and Z ∈ GLn(Fq) are public
matrices. The public keys of the system are of the form Y = Z−rXZr and Z−sXZs, where the integers r
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and s are secrets. The shared secret is Z−r−sXZr+s, and so it is enough to solve the CSP, i.e. find any one
of the integers r and s. We will show that the retrieval of r ∈ Z from X,Z, and Y reduces to a set of DLP’s.
This analysis enables a full cryptanalysis of the system proposed in [35].

First observe that there exists an extension Fqk of Fq and a unique matrix P ∈ GLn(Fqk) (computable in
polynomial time, by the algorithm in [23]) such that JZ = PZP−1, where JZ is the Jordan Normal form of
Z. Writing M = PXP−1 and N = PY P−1, we then have Z−rXZr = Y ⇐⇒ J−rZ MJr

Z = N . The integer
r can then be recovered from the latter of these two equations, using a set of algebraic manipulations. The
following theorem summarizes the main result of this section.

Theorem 5. If JZ is diagonal, the retrieval of r reduces to a set of at most n2 simultaneous DLP’s over
Fqk . If JZ is not diagonal and composed of s > 1 Jordan blocks, recovering r reduces to s2 instances each
of a linear equation over Fq and a simultaneous DLP over Fqk .

4.1 An application to cryptanalysis

In [35], a protocol based on the above-discussed special case of the CSP (i.e. where the conjugators are
all in a cyclic subgroup) described above was proposed for a ring R = Hp called quaternions mod p. For
a prime p, the authors define Hp as the set {a = a1 + a2i + a3j + a4k | ai ∈ Zp}. Arithmetic is defined
in the usual way for quaternions, but over Zp (for a detailed exposition on quaternion sets, see [34]). We
observe that by Proposition 3.3 in [34], we have an explicit isomorphism (with an explicit inverse) between
Hp and Mat2(Z/pZ). Thus, in effect, the protocol in [35] may be treated as if it is over Mat2(Fp), and then
Theorem 5 gives a full reduction to at most 4 DLP’s.

5 Conclusion

In this paper, we described conditional reductions of and solutions to the CSP in three classes of groups,
namely polycyclic, extraspecial p-groups, and matrix groups. We found that the CSP may often be reduced
to a set of DLP’s or even to an easier problem, like a set of linear modular equations. Our results imply the
non-availability of some classes of groups as platforms, and a minimum complexity of a protocol designed
based on the CSP. For instance, Theorem 5 implies that for a protocol over a matrix group, conjugators
must be picked from a subgroup with at least two generators. In particular, this method gives a solution to
a special case of the Anshel–Anshel–Goldfeld and Ko–Lee protocols over GLn(Fq). The section on p-groups
showed that extraspecial p-groups are unsuitable platforms. The result on central products can be seen as
an analogy to the Pohlig–Hellman algorithm [28] for the CSP, and shows that a selected platform must be
“atomic”, or have a central decomposition that is difficult to compute. The section on polycyclic groups
shows that the CSP in the case with only two generators may already have reasonable difficulty, and suggests
that with more than two generators the CSP may indeed offer promising security levels.
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