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Abstract. The Patterson-Wiedemann (PW) construction having odd
number of variables n, where n = pq such that p and q are distinct prime
numbers, can be interpreted as idempotent functions which are repre-
sented by the (d, r)-interleaved sequences formed by all-zero and all-one

columns, where r = (2p − 1)(2q − 1), d = (2n−1)
r

. We here study a mod-
ified form of the PW construction, which only requires 2n − 1 (= dr) be
a composite number, by relaxing the constraint on the values of d and
r. We then elaborate the case n = 15 and consider the functions cor-
responding to the (217, 151)-interleaved sequences. Taking into account

the functions satisfying f(α) = f(α2k ) for all α ∈ F2n in this scenario,
where k is a fixed divisor of n, we obtain new Boolean functions with
nonlinearity 16268 exceeding the bent concatenation bound, which are
not affine equivalent to the PW functions. Further, it has been recently
shown that the maximum possible nonlinearity is 16276 for the functions
corresponding to the (151, 217)-interleaved sequences; however, we find
that in our case there is the possibility to achieve or exceed the best
known nonlinearity 16276 of the PW functions.

Keywords: Nonlinearity · Patterson-Wiedemann (PW) construction ·

Bent concatenation bound.

1 Introduction

The maximum nonlinearity of n-variable Boolean functions – or, equivalently,
the covering radius of the Reed-Muller RM(1, 2n) codes of order 1 and block
length 2n – is unknown for odd n > 7, as a long-standing open problem in
cryptography and coding theory. The highest known nonlinearity had been the

bent concatenation bound of 2n−1 − 2
n−1
2 , till Patterson and Wiedeman dis-

covered [9] in 1983 the 15-variable Boolean functions with nonlinearity 16276

(= 215−1 − 2
15−1

2 + 20), using a hybrid approach of combinatorial methods and
heuristic search together. It is well-known that the direct sum of a bent function

with one of these PW functions gives nonlinearity 2n−1 − 2
n−1
2 + 20 × 2

n−15
2

for odd n > 15. For the smaller odd number of variables, the bent concatena-
tion bound could be exceeded [7] over two decades later by attaining 9-variable
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Boolean functions having nonlinearity 241 (= 29−1 − 2
9−1
2 + 1) in the rotation

symmetric class. Shortly after that, this result is improved [8] to 242 by per-
forming a search properly within the generalized rotation symmetric class (also
known as the class of k-rotation symmetric Boolean functions (k-RSBFs)). Thus

the highest known nonlinearity is 2n−1 + 2
n−1
2 + 2

n−7
2 for n = 9, 11, and 13. As

evident from the above discussion, the lower bound of the maximum nonlinearity
for odd n could be improved only by discovering Boolean functions having non-
linearity greater than the bent concatenation bound. For even n, the maximum
nonlinearity is 2n−1 − 2

n
2 −1 and Boolean functions having this nonlinearity are

called bent. It should also be noted that the generic upper bound on nonlinearity
is 2⌊2n−2 − 2

n
2 −2⌋ [3].

We now give a description of the PW construction. Let n = pq such that p and
q are distinct prime numbers. The invariance of a function f : F2n → F2 under
the action of F∗

2p × F∗
2q implies that f(ξi) = f(ξi+jd) for all i = 0, 1, . . . , d − 1

and j = 0, 1, . . . , r − 1, where r = (2p − 1)(2q − 1), d = 2n−1
r , and ξ is a

primitive element of F2n . In other words, f is invariant under the action of a
cyclic subgroup of order r of F∗

2n . Then, the function f can be interpreted in
terms of a (d, r)-interleaved sequence as follows [2]:

fd,r =


f(ξ0) f(ξ1) f(ξ2) . . . f(ξd−1)
f(ξd) f(ξd+1) f(ξd+2) . . . f(ξ2d−1)
f(ξ2d) f(ξ2d+1) f(ξ2d+2) . . . f(ξ3d−1)

...
...

...
...

...
f(ξ(r−1)d) f(ξ(r−1)d+1) f(ξ(r−1)d+2) . . . f(ξrd−1)

 , (1)

where each column is either all-zero or all-one column. The PW construction
exploits the above structure and puts an additional condition of being invariant
under the Frobenius automorphisms (i.e., f(α) = f(α2) for all α ∈ F2n and such
functions are called idempotent). Thus, a Boolean function f obtained from the
PW construction is an idempotent in the form of a (d, r)-interleaved sequence
consisting of all-one and all-zero columns. Let the rows and columns of the
interleaved sequence be numbered from 0 to r−1 and 0 to d−1, respectively. Note
that, thanks to the the idempotency property, the set of columns is partitioned
into the equivalence classes with respect to the equivalence relation defined by
i ∼ j if and only if i ≡ j × 2s mod d for some nonnegative integer s, and hence
all the columns corresponding to the same equivalence class are either all-one
columns or all-zero columns, where i, j ∈ {0, 1, . . . d− 1}.

Let us now consider n-variable Boolean functions for which f(α) = f(α2k)
for all α ∈ F2n , where k is a fixed divisor of n. These functions can be inter-
preted [8] as (generalized) k-RSBFs by a proper choice of basis. It should be
noted that when k = 1, we get idempotent functions which correspond to 1-
RSBFs (simply called RSBFs) forming the rotation symmetric class [1]. In [4],
the constraint imposed by the idempotency property of the PW construction is

relaxed and the 15-variable functions satisfying f(α) = f(α2k) for all α ∈ F215

are searched exhaustively for k = 3 and k = 5 (the case of k = 1 corresponds
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to the PW construction). In both cases, new functions with nonlinearities 16268
and 16269, which are not affine equivalent to the PW functions, exceeding the
bent concatenation bound are obtained. Recalling that the 9-variable Boolean
functions having nonlinearity 242 are also obtained within the class of k-RSBFs,
the result of [4] confirms that the class of generalized RSBFs contains highly
nonlinear Boolean functions and it makes sense to search for them.

In this paper, we study a modified version of the PW construction in which n-
variable Boolean functions with 2n−1 being a composite number are considered
and we obtain the necessary conditions, i.e., system of inequalities, to achieve
nonlinearity greater than the bent concatenation bound for those correspond-
ing to the interleaved sequences having each column either all-zero or all-one.
Specifically, we elaborate the case of 15-variable Boolean functions which are
represented in the form of (217, 151)-interleaved sequences consisting of all-one

and all-zero columns, satisfying f(α) = f(α2k) for all α ∈ F215 where k = 1, 3,
and 5. Note that taking k = 1 and swapping the number of rows and the number
of columns give the PW construction. We then obtain the system of inequalities
for our case to exceed the bent concatenation bound and find that there exist
some solutions. It is computed that the search spaces are of size 221, 249, and 293

for k = 1, 3, and 5, respectively. After that, we perform an efficient exhaustive
search for k = 1 and k = 3 by exploiting the system of inequalities and the
functions having nonlinearity greater than the bent concatenation bound are
enumerated. The nonlinearities we obtain are 16260, 16261, 16267, and 16268.
We have checked that the functions with these nonlinearities are not invariant
under the action of F ∗

23 or F∗
25 , and are not affine equivalent to the PW functions.

Next, we compute the possible nonlinearities for our case, i.e., the case of
(217, 151)-interleaved sequences consisting of all-one and all-zero columns, by
utilizing the method in [6] used to find some nontrival upper bounds and pos-
sible nonlinearities of a super-set of PW functions. It has been shown in [6]
recently that for the 15-variable functions which are invariant under the ac-
tion of F ∗

23 × F∗
25 (corresponding to the (151, 217)-interleaved sequences), the

maximum possible nonlinearity is 16276 and all the possible nonlinearities are
16268, 16269, 16275, and 16276 (which are achieved by the PW functions). How-
ever, in our case we find that all the possible nonlinearities are [16259, 16261],
[16267, 16269], [16275, 16277], [16283, 16285], 16291, and 16292. Thus there is
the possibility of an improved nonlinearity result with further search effort. We
have also considered the cases n = 11 and 21 for which 2n − 1 is a composite
number, which again indicates the existence of possible nonlinearities greater
than the bent concatenation bound for both cases.

It is to be noted that the best known nonlinearity results in literature could
be found merely by devising relatively small search spaces that are rich in terms
of high nonlinearity. This is probably not an easy task, as evident from very
few results in this direction. Therefore, identifying and canalizing search efforts
to proper search spaces is of importance. The modified PW construction that
we suggest basically provides more choices to look into for a suitable corpus of
Boolean functions and our results for n = 15 indicate their existence. Further,
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one can perform the search efficiently, since any solution of a system of linear
inequalities (of size at most d) provides a Boolean function with nonlinearity
greater than the bent concatenation bound, as shown in Section 2.

In the following section, we obtain the system of inequalities, for the case
2n−1 is a composite number, to exceed the bent concatenation bound. In Section
3, we present the details of our exhaustive search and then we compute the
possible nonlinearities for n = 11, 15 and 21 in Section 4.

2 Finding System of Inequalities

We start with the following proposition, which indicates that the linear functions,
when considered in the form of interleaved sequences, are column-wise cyclic
rotations of each other.

Proposition 1 Let the function defined by h(ξi) = Trn1 (ξ
i) for all 0 ≤ i < 2n−1

be represented in the form of a (d, r)-interleaved sequence hd,r, where ξ is a
primitive element of F2n and dr = 2n − 1. Then the j-th column of the (d, r)-

interleaved sequence gd,rt corresponding to the function gt(ξ
i) = h(ξi+t) is a

u-cyclic rotation of the v-th column of hd,r such that v + ud ≡ j + t mod 2n−1,
where 0 ≤ j, v < d, 0 ≤ u < r, and 0 ≤ t < 2n − 1.

Proof. The v-th column of hd,r can be expressed as the following:

(Trn1 (ξ
v), T rn1 (ξ

v+d), T rn1 (ξ
v+2d), . . . , T rn1 (ξ

v+(r−1)d))T ,

where (.)T stands for the transpose. On the other hand, the j-th column of gd,rt

can be written as follows:

(Trn1 (ξ
j+t), T rn1 (ξ

j+t+d), T rn1 (ξ
j+t+2d), . . . , T rn1 (ξ

j+t+(r−1)d))T

=(Trn1 (ξ
v+ud), T rn1 (ξ

v+(u+1)d), T rn1 (ξ
v+(u+2)d), . . . , T rn1 (ξ

v+(r−1)d), T rn1 (ξ
v+rd),

T rn1 (ξ
v+(r+1)d), . . . , T rn1 (ξ

v+(r−1+u)d))T

=(Trn1 (ξ
v+ud), T rn1 (ξ

v+(u+1)d), T rn1 (ξ
v+(u+2)d), . . . , T rn1 (ξ

v+(r−1)d), T rn1 (ξ
v),

T rn1 (ξ
v+d), . . . , T rn1 (ξ

v+(u−1)d))T ,

where the last expression is the u-cyclic rotation of the v-th column of hd,r. ⊓⊔

Since the gt functions having gt(0) = 0 for all t = 0, 1, . . . , 2n − 2 and the
constant function with all 0’s, denoted by 0, form all the linear functions, we
need to find all the distances (of an n-variable Boolean function f) to these
functions and their complements in order to compute nonlinearity (of f). Let
Wt = (Wt,0,Wt,1, . . . , Wt,d−1) such that Wt,j is the weight of the j-th column

of gd,rt corresponding to the linear function defined by gt(ξ
i) = Trn1 (ξ

i+t) for all
i = 0, 1, . . ., 2n − 2 and gt(0) = 0. Then, one can find the distance between
the function f , for which f(0) = 0 and each column of fd,r is either all-zero or
all-one, and the linear function gt as given below:
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d(f, gt) =

d−1∑
i=0

(r −Wt,i)li +

d−1∑
i=0

Wt,i(li ⊕ 1) = 2n−1 + r

d−1∑
i=0

li − 2

d−1∑
i=0

Wt,ili, (2)

where li = 1 if the i-th column of fd,r is all-one and li = 0 otherwise. Next, it
follows from the definition of nonlinearity that the following inequalities must
be satisfied to exceed the bent concatenation bound (given by µ):

d(f,0) = r

d−1∑
i=0

li > µ, (3)

d(f,1) = 2n − r

d−1∑
i=0

li > µ, (4)

d(f, gt) = 2n−1 + r

d−1∑
i=0

li − 2

d−1∑
i=0

Wt,ili > µ, (5)

d(f, gt) = 2n−1 − r

d−1∑
i=0

li + 2

d−1∑
i=0

Wt,ili > µ, (6)

where µ = 2n−1 − 2
n−1
2 , gt(x) = gt(x) ⊕ 1 for all x ∈ F2n , and the constant

function with all 1’s (resp., all 0’s) is denoted by 1 (resp., 0). These inequalities
can be rearranged in a more compact form as follows:

µ+ 2
n+1
2

r
>

d−1∑
i=0

li >
µ

r
, (7)

r

2

d−1∑
i=0

li + 2
n−3
2 >

d−1∑
i=0

Wt,ili >
r

2

d−1∑
i=0

li − 2
n−3
2 . (8)

Eq. (7) is called the weight condition as r
∑d−1

i=0 li is the weight of the function
f . Note that Eq. (8) should hold for all t = 0, 1, . . . , 2n − 2; however, thanks to
Prop. 1, all the Wt vectors (of length d) are cyclic rotations of each other. Hence,
there are only d inequalities provided by Eq. (8).

Now let us impose the condition f(α) = f(α2k) for all α ∈ F2n , where k is
a fixed divisor of n. As f(α) = f(ξv+ud) for some values of u and v, it is clear

that f(α2k) should be within the (v2k mod d)-th column of fd,r. Hence, the
condition partitions the columns (numbered from 0 to d − 1) with respect to
the equivalence relation defined by iρkdj if and only if i ≡ j2ks mod d for some
nonnegative integer s, such that those belonging to the same equivalence class
are either all-one columns or all-zero columns. Then, Eqs. (7) and (8) can be
expressed accordingly as follows:
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µ+ 2n+1

2

r
>

m−1∑
j=0

Lj >
µ

r
, (9)

r

2

m−1∑
j=0

Lj + 2
n−3
2 >

m−1∑
j=0

Wt,jLj >
r

2

m−1∑
j=0

Lj − 2
n−3
2 , (10)

where Lj and Wt,j are the sums of li’s and Wt,i’s corresponding to the columns
belonging to the same (i.e., the j-th) equivalence class, respectively, where m is
the number of equivalence classes. It is well-known that in the case of the PW
construction, the number of inequalities is equal to m. However, for the general
case, i.e., when 2n − 1 is a composite number, it is at most d as we notice that
after imposing the aforementioned condition, some of the inequalities obtained
from Eq. (10) can be the same (in case of (217,151)-interleaved sequences) as we
will see in the subsequent section.

It should be pointed out that Eqs. (7) and (8) apply to the case of any n
whenever 2n − 1 is a composite number; however, Eqs. (9) and (10) additionally
require that n is not a prime number.

3 Case n = 15

In the rest of this paper, we implement 15-variable Boolean functions using
the primitive polynomial x15 + x + 1. Let f be a Boolean function represented
as a (217, 151)-interleaved sequence which is made up of all-one and all-zero

columns. From Eq. (7), we have 109 ≥
∑216

i=0 li ≥ 108. Substituting these two
possible values into Eq. (8), we get

8218 ≥
216∑
i=0

Wt,ili ≥ 8090 for

216∑
i=0

li = 108, (11)

8293 ≥
216∑
i=0

Wt,ili ≥ 8166 for

216∑
i=0

li = 109. (12)

As aforementioned, theWt vectors are cylic rotations of each other, and hence
there are 217 of them which are different. One of them is computed as follows:

(76, 72, 72, 68, 72, 80, 68, 76, 72, 80, 80, 72, 68, 72, 76, 68, 72, 68, 80, 76, 80,
88, 72, 68, 68, 76, 72, 84, 76, 68, 68, 60, 72, 72, 68, 72, 80, 84, 76, 72, 80, 80, 88,
84, 72, 76, 68, 72, 68, 64, 76, 80, 72, 72, 84, 68, 76, 72, 68, 76, 68, 84, 60, 72, 72,
84, 72, 80, 68, 76, 72, 80, 80, 72, 84, 72, 76, 84, 72, 84, 80, 76, 80, 72, 88, 68, 84,
76, 72, 84, 76, 84, 68, 76, 72, 72, 68, 72, 64, 84, 76, 72, 80, 80, 72, 84, 72, 76, 84,
72, 68, 80, 76, 80, 72, 72, 68, 68, 76, 88, 68, 76, 84, 68, 60, 72, 72, 84, 72, 80, 84,
76, 72, 64, 80, 72, 68, 72, 76, 84, 72, 84, 80, 76, 80, 72, 72, 84, 84, 76, 72, 68, 76,
84, 84, 76, 72, 72, 84, 72, 80, 84, 76, 72, 80, 80, 72, 68, 88, 76, 68, 72, 84, 80, 76,
64, 72, 72, 84, 84, 76, 72, 84, 76, 68, 84, 76, 72, 72, 84, 72, 80, 68, 76, 72, 80, 64,
72, 84, 72, 76, 84, 72, 84, 80, 76, 80, 72, 72, 84, 84, 76, 72, 84, 76, 84, 84).
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Thus, one can restrict the weight of l = (l0, l1, . . . , l216) to either 108 or 109 and
then perform some heuristic searches (e.g., [5]) exploiting the inequalities given
by either Eq. (11) or Eq. (12), respectively. However, since the search space
is of size 2217, it is probable to not encounter with a solution easily yielding
nonlinearity greater than the bent concatenation bound. Next, we consider the

functions satisfying f(α) = f(α2k) for all α ∈ F215 where k = 1, 3, and 5.

3.1 Idempotent Functions

Let the function f corresponding to the (217, 151)-interleaved sequence having
a fixed binary sequence of length 217 as its rows be an idempotent function,
i.e., f(α) = f(α2) for all α ∈ F215 . Thanks to the idempotency property, the
columns (numbered from 0 to 216) are partitioned into 21 equivalence classes
with respect to the equivalence relation ρ1216. Among these equivalence classes,
12 are of size 15, 6 are of size 5, 2 are of size 3, and 1 is of size 1. Let us represent
an equivalence class by the smallest integer among its elements. We then have
the following 21 representatives: 0, 1, 3, 5, 7, 9, 11, 13, 15, 19, 21, 25, 27, 31, 33,
35, 37, 49, 77, 93, 105. Then notice that the truth table of f can be obtained
from the values of (l0, l1, . . . , l20) = (f(1), f(ξ), f(ξ3), . . . , f(ξ93), f(ξ105)) which
we call the representative truth table (RTT). The representatives 7, 21, 35, 49,
77, 105 (resp., 31 and 93) belong to the equivalence classes of size 5 (resp., 3). All
the other representatives except 0 (which corresponds to the equivalence class
of size 1) represent the equivalence classes of size 15. By fixing l0 = 0, it can be
seen that there are only three possible combinations of the equivalence classes,
such that li = 1 for each combination and li = 0 for the rest, because of the
weight condition given by Eq. (7) (or Eq. (9)), which are

– 5 with size 15, 6 with size 5, and 1 with size 3,
– 6 with size 15, 3 with size 5, and 1 with size 3,
– 7 with size 15 and 1 with size 3,

Then we perform an exhaustive search only for these cases, which reduces the
search space from 221 to 215.3, and found two functions having nonlinearity
greater than the bent concatenation bound. The RTTs of these two functions
are given in Table 1. By complementing their truth tables except f(0), we obtain
nonlinearities 16267 and 16261.

Table 1. The two RTTs among the idempotent functions with nonlinearity NLf

greater than the bent concatenation bound 16256.

# (f(1), f(ξ), f(ξ3), . . . , f(ξ93), f(ξ105)) NLf

1 (0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1) 16268

2 (0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0) 16260
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3.2 Functions for which f(α) = f(α23

)

Now we impose the condition f(α) = f(α23) for all α ∈ F215 on the function f
which is represented by the (217, 151)-interleaved sequence having a fixed binary
sequence of length 217 as its rows. In this case, the columns are partitioned into
49 equivalence classes with respect to the equivalence relation ρ3216 and thus
there are 42 equivalence classes of size 5 and the rest are of size 1. We then
have 49 representatives: 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 18, 19, 20,
21, 22, 23, 25, 26, 27, 31, 33, 35, 36, 37, 38, 43, 44, 46, 49, 50, 52, 54, 62, 66,
69, 74, 77, 93, 97, 100, 105, 108, 124, 155, 186. The representatives 0, 31, 62,
93, 124, 155, and 186 belong to the equivalence classes of size 1, and the rest of
them belong to the equivalence classes of size 5. Because of the weight condition,
there are two possible choices indicating that li = 1 for half of the equivalence
classes of size 5, and 3 or 4 of the equivalence classes of size 1; and li = 0
for the rest. However, notice that the functions satisfying one choice and the
complements of the functions satisfying the other choice are the same except
their first bits. Therefore we select one of the two choices, which reduces the size
of the search space from 249 to 244.1. Our exhaustive search finds 28 functions
with nonlinearity 16268 and 7 functions with nonlinearity 16260. The RTT’s of
these functions are given in Table 2. Again, by complementing their truth tables
except f(0), we obtain nonlinearities 16267 and 16261.

We have checked that the functions in Table 1 and 2 are not affine equivalent
to the PW functions. Further, note that there exist some functions which are
invariant under the action of F∗

23 or F∗
25 among those that we here consider.

However, we find that none of them exceeds the bent concatenation bound.
As mentioned previously, there are at most d = 217 inequalities provided

by Eq. (10). In our case, we observe that 16 (resp., 30 and 54) inequalities are
the same for k = 1 (resp., k = 3 and k = 5), which reduces the number of
inequalities from 217 to 202 (resp., 188 and 164). For k = 5, the search space is
of size 293 and the weight condition reduces it to 288.1, which is still huge and
an exhaustive search is not possible; however, some other search strategies can
be applied and we are in the process of performing a heuristic search.

4 Possible Nonlinearities

We compute the possible nonlinearities following the method used in [6] for
any function f corresponding to the (217, 151)-interleaved sequences having
each column either all-zero or all-one. Since the maximum nonlinearity of an
15-variable Boolean function can be at most 16292 (= µ + 36) [3], where µ =

215−1− 2
15−1

2 = 16256, one of the distances defined by Eqs. (3)-(6) should be an
integer within the interval [µ+1, µ+36] to exceed the bent concatenation bound.

From the weight condition, the possible values of
∑216

i=0 li are 108 and 109. Then,
the corresponding values of the distances d(f,0) and d(f,1), defined by Eqs. (3)
and (4), respectively, are found as 16308, 16459, 16460, and 16309, which are
greater than the upper bound (16292) of the maximum nonlinearity. Thus we
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Table 2. The 35 RTTs with nonlinearity NLf > 16256, among the functions satisfying

f(α) = f(α23) for all α ∈ F215 .

# (f(1), f(ξ), f(ξ2), . . . , f(ξ155), f(ξ186)) NLf

1 (1111000100010001110000111010101111001100101110000) 16268

2 (1100101101010011011110011000000011000110101011100) 16268

3 (1101001101000100111000010110110011100110100011010) 16268

4 (1010010101101111000010011101000100000111001111001) 16268

5 (1010011110011001110100100101001010001010111110000) 16268

6 (1011111110100100010010001000100010011110101110100) 16268

7 (1000100101000101101111101110110001001101001010010) 16268

8 (1100010110000000100100001101111101110110011110100) 16268

9 (1100100010011011000110001101011011000010111101010) 16268

10 (1111000000100011000011101111100111000101110100001) 16268

11 (1001110101110011010011001100100110010001100010101) 16268

12 (1010101010000100001010000110110011110111101100011) 16268

13 (0111101011000011000111011000110001101010111001000) 16268

14 (0111100101100000100010110101110011111000001101010) 16268

15 (0001101011101010100010110001100100101111001101001) 16268

16 (0011010011010001000101011011111001110100010101100) 16268

17 (0111011101000101010000011111100100100010011101010) 16268

18 (0111000110100010101110010100100101010111011010001) 16268

19 (0111110010011101000011010010100000010111101100110) 16268

20 (0110110101010001000011110100011011010101000101101) 16268

21 (0110111100001000101010101101000011011011010101100) 16268

22 (0010101111011101110110101100100000001111010000001) 16268

23 (0100011000011111101011101010010001011011001000110) 16268

24 (0110101000011011100000101011100101101110100100101) 16268

25 (0010111100000111001000001110011101001010001111011) 16268

26 (0100100111110101000110101111101000000100010110110) 16268

27 (0110100110100110001110000011011111000001010110011) 16268

28 (0101110100010011110101000100110101010110001000111) 16268

29 (1011100111100000010100010101101110100100110111000) 16260

30 (1100101100101110111010100100000110001011101010001) 16260

31 (1110010100010101011101001110011011010000100010110) 16260

32 (0001011001011001110001111100100000111110101001100) 16260

33 (0101100001100110001011011010110101110101000001011) 16260

34 (0110001010001100101100100011011001101110011101010) 16260

35 (0010110010111011000111101001001100010001011100101) 16260
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cannot get any possible nonlinearity NLf > µ using the distances d(f,0) and
d(f,1), and now we look at the other distances defined by Eqs. (5) and (6).

Let us consider the distance d(f, gt) = 214 + 151
∑216

i=0 li − 2
∑216

i=0 Wt,ili,
obtained from Eq. (5). It can be easily computed that the greatest common
divisor of the values (given in the Section 3) of the vectorWt is 4. Hence, it should

be noted that if (214 + 151
∑216

i=0 li − d(f, gt))/8 is an integer for any d(f, gt) ∈
[µ+1, µ+36], then the corresponding distance d(f, gt) is a possible nonlinearity.

Substituting 108 and 109 for
∑216

i=0 li, we obtain the possible nonlinearities as
16259, 16260, 16267, 16268, 16275, 16276, 16283, 16284, 16291, 16292. Following
the same argument for Eq. (6), we get more values of the possible nonlinearities
which are 16261, 16269, 16277, 16285.

Similarly, we have computed the possible nonlinearities for n = 11 and 21,
too (notice that 2n−1 is prime for n = 13, 17, and 19). For n = 11, we find that
these are 995, 996, and 997 (which is greater than the best known value) for the
(89, 23)-interleaved sequences. We have checked that the idempotents in this case
do not have nonlinearity greater than the bent concatenation bound. In case n =
21, we find that for the (6223, 337)-interleaved sequences, all the nonlinearities
up to the upper bound of 1047850 are possible except the nonlinearities {220 −
210+4+8i | i = 0, 1, . . . , 36}. For the latter case, the search space is of size 2311

for the idempotent functions in the form of (6223, 337)-interleaved sequences.
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