
Interactive Oracle Proofs of Proximity to
Algebraic Geometry Codes

Sarah Bordage1,2 and Jade Nardi2,1⋆⋆

1 LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris
sarah.bordage@lix.polytechnique.fr

2 Inria
jade.nardi@univ-rennes1.fr

Abstract. The problem of testing proximity to an error-correcting code
C consists in distinguishing between the case where an input word, given
as an oracle, belongs to C and the one where it is far from every codeword
of C. Algebraic Geometry (AG) codes are good candidates to construct
short proof systems, but there exists no efficient proximity tests for them.
We construct an Interactive Oracle Proof of Proximity (IOPP) for some
families of AG codes by generalizing an IOPP for Reed-Solomon codes,
known as the FRI protocol [6]. We identify suitable requirements for
designing efficient IOPP systems for AG codes. Our approach relies on
Kani’s result that splits the Riemann-Roch space of any invariant divisor
under a group action on a curve into several explicit Riemann-Roch
spaces on the quotient curve [17]. Under some hypotheses, a proximity
test to C is thus reduced to one to a simpler code C′. Iterating this
process thoroughly, we end up with a membership test to a code with
significantly smaller length.
In addition to proposing the first proximity test targeting AG codes,
our IOPP admits quasilinear prover arithmetic complexity and sublinear
verifier arithmetic complexity with constant soundness for meaningful
classes of AG codes. As a concrete instantiation, we study AG codes on
Kummer curves, which are potentially much longer than Reed-Solomon
codes. For these curves, we extend our generic construction to reach a
strictly linear proving time and a strictly logarithmic verification time.

1 Extended abstract

Under the generic term of arithmetization [20], algebraic techniques for con-
structing proof systems using properties of low-degree polynomials emerged from
the study of interactive proofs (IPs, [14]). Arithmetization techniques have been
enhanced and fruitfully applied to other families of proof systems since then,
including probabilistically checkable proofs (PCPs, [4,2,1]). To construct a proof
system for a non-deterministic relation R, arithmetization turns any instance-
witness pair (x,w) into a word that lies in a given error-correcting code C if
(x,w) ∈ R, and is very far from C otherwise.

⋆⋆ [0000−0003−0901−7266]

Since the seminal works of Kilian [19] and Micali [22], a lot of efforts have
been put into making PCPs efficient enough to obtain practical sublinear non-
interactive arguments for delegating computation. In search of reducing the work
required to generate such probabilistic proofs, as well as the communication com-
plexity of succinct arguments based on them, Interactive Oracle Proofs (IOPs)
have been introduced as a generalization of both PCPs and IPs.

Considering for the first time univariate polynomials instead of multivariate
ones, [13,?] constructed a PCP with quasilinear proof length and constant query
complexity. Since then, efficient transparent and zero-knowledge non-interactive
arguments have been designed by relying on Reed-Solomon (RS) codes, e.g.
[7,9,18]. At some point, aforementioned arguments require a proximity test to
RS codes. One can use a prover-efficient Reed-Solomon IOP of Proximity, which
is an interactive variant of PCP of Proximity introduced by [8]. The state-of-
the-art IOPP for RS codes is known as the FRI protocol, firstly introduced in
[6].

In 2013, [11] construct a PCP with linear proof length and sublinear query
complexity for boolean circuit satisfiability by using AG codes. For any ε > 0
and instances of size n, their PCP has length 2O(1/ε)n and query complexity nε.
When aiming at optimal proof length and query complexity as small as possible,
this result remains the state-of-the-art PCP design. By using AG codes, the
authors of [11] reduce the field size to a constant, which avoids a logarithmic
blowup in proof bit-length (as in [13]). However, they are not able to apply proof
composition [2] to reduce the query complexity of their PCP because decision
complexity of the PCP verifier is too large (polynomial in the query complexity).

Improving on [11], [8] construct an interactive oracle proof (IOP, [10]) for
boolean circuit satisfiability with linear proof length and constant query com-
plexity. However, prover and verifier complexities are still super-linear. The IOP
of [8] invokes the sumcheck protocol [20] on O(1)-wise tensor product of AG
codes, which exponentially deteriorates the rate of the base code. Then, they use
Mie’s PCP of Proximity for non-deterministic languages [23] to test proximity
to the tensored code. Both constructions benefit from AG codes to get constant
size alphabet and linear proof bit-lengths. Still, prover and verifier running times
prevent them from being implemented for verifying meaningful computations.

A recent work of [24] constructs an IOPP for any deterministic language
which can be decided in time poly(n) and space no(1), with constant round and
query complexities, linear proof length and sublinear verification. This might be
applied to test proximity to AG codes but prover running time is poly(n), which
can obstruct implementations. By contrast, we exhibit specific families of AG
codes for which we construct a proximity test with linear prover running time
and logarithmic verification. Our construction is also simpler to implement, since
the prover and the verifier mainly perform small degree univariate interpolations.

The FRI protocol for RS proximity testing admits linear prover time, log-
arithmic verifier time and logarithmic query complexity. A natural question is
whether an IOPP targeting AG codes of similar efficiency can be constructed. In-
deed, AG codes [15], as evaluations of a set of functions at some designated points

on a given curve, extend the notion of Reed-Solomon codes and inherit many
of their interesting properties. A key feature for a family of codes to be suitable
for arithmetization is a multiplication property [21], namely the component-wise
multiplication of two codewords lies in a code with good minimum distance. AG
codes not only feature this property but may also have arbitrary large length over
a fixed finite field F, unlike RS codes. For concrete efficiency, complexity mea-
sures (proof length, query complexity, prover/verifier time) are closely examined
and reducing the size of the alphabet directly impacts the binary complexities.

Prover complexity is actually the main bottleneck in deploying zero-knowledge
proof systems for large computations. The running time of the prover is bounded
from below by the encoding time during arithmetization. In this direction, some
one-point AG codes, e.g. on Kummer type curves, are especially appealing. For
instance, there exist a quasilinear encoding algorithm for AG codes on the Her-
mitian curve, which is a special case of Kummer type curves [5].

This motivates a part of our study dedicated to the case of AG codes on
Kummer type curves. To encourage the search for suitable families of AG codes,
we study generic conditions to perform proximity testing. By constructing an
efficient IOPP for AG codes, we hope that it opens up new possibilities for de-
signing efficient probabilistic proof systems with short proofs, without requiring
tensor product codes.

1.1 Definition of an IOPP for a code C

Let C ⊆ ΣS be an evaluation code with domain S of size n and alphabet Σ. We
measure the distance between u, u′ ∈ ΣS with the relative Hamming distance
∆, namely the ratio of coordinates in which they differ. For a code C ⊆ ΣS ,
the distance of u ∈ ΣS from C, denoted by ∆(u,C), is the minimal distance
between u and a codeword of C. If ∆(u,C) > δ, we say that u is δ-far from C,
and δ-close otherwise. As mentioned earlier, we address the problem of proximity
testing to a code C, i.e. given a code C and assuming a verifier has oracle access
to a function f : S → Σ, determine whether f ∈ C or f is δ-far from C. Here,
we focus on the case where C is an AG code. An algebraic geometry (AG) code
C = C(C,P, D) is a vector space formed by the evaluations on P ⊂ C of func-
tions in the Riemann-Roch space LC(D). We address this problem in the IOP
model, which proved to be particularly promising for the design of proof systems.

We are specifically interested in public-coin IOP of Proximity (IOPP) for a
family of evaluation codes C , thereby we specify our definition for this particular
setting. An IOPP (P,V) for a code C is a pair of randomized algorithms, where
both P (the prover) and V (the verifier) receive as explicit input the specification
of a code C ⊆ ΣS . We define the input size to be n = |S|. Furthermore, a
purported codeword f : S → Σ is given as explicit input to P and as an oracle
to V. The prover and the verifier interact over at most r(n) rounds and during
this conversation, P seeks to convince V that f belongs to the code C.

At each round, the verifier sends a message chosen uniformly and indepen-
dently at random, and the prover answers with an oracle. After the end of the

interaction with the prover, verifier queries the prover’s messages using public
randomness. Thus, such an IOPP is a public-coin protocol (or Arthur-Merlin
[3]).

Let us denote ⟨P ↔ V⟩ ∈ {accept, reject} the output of V after interacting
with P. The notation Vf means that f is given as an oracle input to V. We
say that a pair of randomized algorithms (P,V) is an IOPP system for the code
C ⊆ ΣS with soundness error s : (0, 1] → [0, 1], if the following conditions hold:

Perfect completeness: If f ∈ C, then Pr[⟨P(C, f) ↔ Vf (C)⟩ = accept] = 1.

Soundness: For any function f ∈ ΣS such that δ := ∆(f, C) > 0 and any
unbounded malicious prover P∗, Pr[⟨P∗ ↔ Vf (C)⟩ = accept] ≤ s(δ).

The length of any prover message is expressed in number of symbols of an
alphabet a(n). The sum of lengths of prover’s messages defines the proof length
l(n) of the IOPP. The query complexity q(n) is the total number of queries
made by the verifier to both the purported codeword f and the oracle sent by
the prover during the interaction. The prover complexity tp(n) is the time needed
to generate prover messages during the interaction (which does not include the
input function f). The verifier complexity tv(n) is the time spent by the verifier
to make her decision when queries and query-answers are given as inputs.

Let RC be the relation consisting of instance-witness pairs (C, f) where C ⊂
ΣS lies in C and f : S → Σ. We say that RC belongs to the complexity
class IOPP[a, r, l, q, δ, s] if on inputs of size n, there is an IOPP system testing
proximity of f to C with alphabet a(n), round complexity r(n), proof length l(n),
query complexity q(n), proximity parameter δ(n) and soundness error s(n).

1.2 Our results

Construction of an IOPP for foldable AG codes. Firstly, we give a criterion for
building an efficient IOPP for AG codes. Let C0 be a curve defined over a finite
field F, D0 a divisor on the curve C0 and P0 ⊂ C(F). This defines an AG code
C0 = C(C0,P0, D0). We construct a sequence of curves

C0 C1 C2 · · · Cr,
π0 π1 π2 πr−1

and a sequence of AG codes Ci := C(Ci,Pi, Di) of decreasing length to turn the
proximity test of the function f (0) = f to C0 into a membership test of a function
f (r) in Cr. In the above sequence of curve, the curve Ci+1 arises as the quotient of
the curve Ci by a cyclic group Z/piZ under the projection πi. We show that such a
procedure is made possible by the action of a large solvable group G on the curve
C0 and some hypotheses on the divisor D0. A code fulfilling all the conditions
we require will be called foldable. We design an IOPP for testing proximity
to any foldable AG code C(C0,P0, D0) with linear proof length, sublinear query
complexity and constant soundness. Efficiency parameters of this protocol, called
AG-IOPP, are given by the following theorem.

Theorem 1 (informal). Let RC be the relation of instance-witness pairs
((C0,P0, D0), f

(0)) such that C0 = C(C0,P0, D0) is a foldable AG code and f (0) ∈
C0. We denote n = |P0|. As C0 is a foldable code, there is a solvable group G
acting on C0. Assume there exists e ∈ (0, 1) such that |G| > ne. For every
proximity parameter δ ∈ (0, 1), there exists a public-coin IOPP system (P,V)
with perfect completeness putting RC in the complexity class

IOPP

alphabet a(n) = F
randomness k(n) = O(log n)
rounds r(n) = O(log n)
proof length l(n) = O(n)
query complexity q(n) = O(n1−e)
proximity parameter δ(n) = δ
soundness error s(n) = 1/2

.

We emphasize that the larger is the group G acting on C0 compared to n, the
smaller are the query complexity and the verifier decision complexity.

AG-IOPP with linear prover and logarithmic verifier on Kummer curves. When
C0 is a Kummer curve of the form yN = f(x), we show how to choose P0 and D0

to make the AG code C0 = C(C0,P0, D0) foldable. We benefit from the action of
the group Z/NZ on C0 that yields a quotient curve C0/(Z/NZ) isomorphic to the
projective line. This enables us to define a sequence of codes (Ci)0≤i≤s such that
the code Cs is a RS code of dimension (degD0)/N +1, which is itself a foldable
AG code. Leveraging this fact, we extend the IOPP for generic foldable AG
codes to construct a very effective AG-IOPP for codes on Kummer curves, with
linear prover running time and strictly logarithmic verification (with respect to
the blocklength of the first code). We get the following improvement.

Theorem 2 (informal). Let RC′ be the relation of instance-witness pairs
((C0,P0, D0), f

(0)) such that C0 = C(C0,P0, D0) is a foldable AG code, C0 is a
Kummer curve of equation C0 : yN = f(x) such that deg f ≡ −1 mod N , N is a
smooth integer, coprime with |F|, and f (0) ∈ C0. We denote n = |P0|. For every
proximity parameter δ ∈ (0, 1), there exists a public-coin IOPP system (P,V)
with perfect completeness putting RC′ in the complexity class

IOPP

alphabet a(n) = F
randomness k(n) = O(log n)
rounds r(n) = O(log n)
proof length l(n) = O(n)
query complexity q(n) = O(log n)
proximity parameter δ(n) = δ
soundness error s(n) = 1/2

.

Prover complexity is O(n) and verifier decision complexity is O(log n).

The Hermitian curve defined over Fq2 by yq+1 = xq+x satisfies the hypothe-
ses of the theorem above. It is well known to have many rational points with
respect to its geometry. We thus provide family of codes much longer than RS
codes that are endowed with a proximity test as efficient as the FRI protocol.

1.3 Technical overview

Our IOPP construction relies on the generalization of the FRI protocol to AG
codes. We recall some ideas behind the construction of FRI protocol (see e.g. [12]
for details) and we describe how we tailor these ideas.

The FRI protocol for RS proximity testing. Let k be a positive integer
and ρ ∈]0, 1[such that ρ = 2−k. The FRI protocol allows to check proximity
to the Reed-Solomon code RS [F,P, ρ] :=

{
f ∈ FP | deg f < ρ |P|

}
by testing

proximity to RS [F,P ′, ρ] with |P ′| < |P|. The FRI protocol considers a family of
linear maps FP → FP′

which randomly “fold” any function in FP into a function
in FP′

. The following three key ingredients enable the FRI protocol to work.

(a) Splitting of polynomials. For any polynomial f of degree deg f < ρn, there
exist two polynomials g, h of degree < 1

2ρn such that

f(x) = g
(
x2

)
+ x · h

(
x2

)
. (1)

This decomposition means that of the space of polynomials of degree less
than ρn into two copies of the space of polynomials of degree less than ρn/2.

(b) Randomized folding. Choose P to be a multiplicative group of order 2r gen-
erated by ω ∈ F. Then, define P ′ = ⟨ω2⟩ = {x2 | x ∈ P}. Set π : F → F to
be the map defined by π(x) = x2, observe that π(P) = P ′ and |P ′| = |P| /2.
The structure of the evaluation domain will allow to reduce the problem of
proximity to one of half the size at each round of interaction.
Based on the decomposition (1), for any z ∈ F we define a folding operator
Fold [·, z] : FP → FP′

by Fold [f, z] := g + zh. If deg f < ρn, both functions
g : P ′ → F and h : P ′ → F belong to RS [F,P ′, ρ]. Then for any random
challenge z ∈ Fq, the operator Fold [·, z] maps RS [F,P, ρ] into RS [F,P ′, ρ].

(c) Folding preserves distance. Except with small probability over z, we have

∆(f,RS [F,P, ρ]) ≥ δ ⇒ ∆ (Fold [f, z] ,RS [F,P ′, ρ]) ≥ (1− o(1))δ.

The protocol goes as follows: the verifier sends a random challenge z ∈ F
and the prover answers with an oracle function f ′ : P ′ → F, which is expected
to be Fold [f, z]. At the next round, f ′ becomes the function to be folded, and
the process is repeated for r rounds. Each round reduces the problem by half,
eventually leading to a function f (r) evaluated over a small enough domain. This
induces a sequence of RS codes of strictly decreasing length, but with constant
code rate and relative minimum distance. The final test consists in checking that
f (r) belongs to the last RS code.

Perfect completeness follows from Item (b). Prover and verifier efficiencies of
the FRI protocol come from the possibility of determining any value of Fold [f, z]
at a point y ∈ P ′ with exactly two values of f , namely on the set π−1({y}).
Consequently, a single test of consistency between f and f ′ requires only two

queries to f and one query to f ′.

Soundness of the protocol relies on Item (c). It is proved using results about
distance preservation under random linear combinations, that could be roughly
stated as follows: “Let V ⊂ Fn

q be a linear code and g, h ∈ Fn
q . As long as δ

is small enough, if we have ∆(g + zh, V) ≤ δ for enough values z ∈ Fq, then
both g and h are δ′-close to V , where δ′ = (1− o(1))δ.” (see [6,?,?,?]). Based on
that, one can deduce that if Fold [f, z] = g+ zh is δ-close to V for enough values
of z, then both g and h are δ′-close from V . The proof of Item (c) consists in
exhibiting a codeword which is δ-close from f , thanks to the decomposition (1).

Remark 1. We point out that Item (c) holds because the functions g and h in
(1) have exactly the same degree. This arises from the crucial fact that the FRI
protocol considers only RS code of dimension a power of 2. Eac RS code is
defined by polynomials of degree at most an odd bound.

Let us observe what happens when f is expected to have degree at most 2d.
The degrees of the functions g and h in the decomposition of f (Item (a)) are
respectively deg g ≤ d and deg h ≤ d − 1. Therefore, knowing that g + zh is a
polynomial of degree ≤ d with high probability on z only tells us that both g and
h have degree ≤ d, which is not enough to deduce that f has degree ≤ 2d and
not 2d+ 1. Moreover words corresponding to a polynomial of degree 2d+ 1 are
among the farthest words from the RS code of degree ≤ 2d. One can overcome
this obstacle by supposing not only deg g,deg h ≤ d but also deg(νh) ≤ d for a
degree-1 polynomial function ν. This implies that deg h < d, hence deg f ≤ 2d.

Our IOPP for AG proximity testing. Let C be a curve defined over a
finite field F and C = C(C,P, D) be an AG code. We aim to adapt the three
ingredients of the FRI protocol to the AG context.

Group actions and Riemann-Roch spaces. The splitting of the polynomial f into
an even and an odd part in Item (a) comes from the action of a multiplicative
group of order 2 on its domain. This observation is also true with the actual
FRI protocol, in which π is an affine subspace polynomial. This phenomenon
occurs in a more general framework: if a group Γ acts on the curve C, its action
naturally extends on the functions on C. The representation theory expresses
any Riemann-Roch space associated to a Γ -invariant divisor on C as a sum of
vector spaces that Kani [17] proved to arise from some Riemann-Roch spaces on
the quotient curve C/Γ through the projection map π : C → C/Γ .

Let us state Kani’s result for a cyclic group Γ = ⟨γ⟩ of prime order p. The
theorem first states that there exists a function µ on C such that γ ·µ = ζµ where
ζ is a primitive pth root of unity. Then, for any divisor D that is Γ -invariant,
any function f in the Riemann-Roch space LC(D) can be uniquely written

f =

p−1∑
j=0

µjfj ◦ π with fj ∈ LC/Γ (Ej) where Ej =

⌊
1

m
π∗ (D + j(µ))

⌋
. (2)

Assume that no point of P is fixed by Γ and set P ′ = π(P). Polynomial inter-
polation enables the determination of fj(P) for any point P ∈ P ′ with exactly
p values of f , namely on the set π−1({P}). This means that the decomposition
(2) can be written for any function in FP , not only for elements of LC(D).

Folding operator. From the decomposition (2), we aim to define folding opera-
tors Fold [·, z] : FP → FP′

(z ∈ F) and a code C ′ = C(C/Γ,P ′, D′) such that
Fold [·, z] (C) ⊆ C ′.

In a first approach, one could choose to define the folding operators similarly
to the FRI protocol by using the functions fj in the decomposition (2) of f ∈ FP

and setting for z ∈ F, Fold [f, z] =
∑p−1

j=0 z
jfj . Then the code C ′ has to be

associated to a divisor D′ on C/Γ such that each Riemann-Roch space LC/Γ (Ej)
can be embedded into LC/Γ (D

′). Note that we would like the rates of C and C ′

to be roughly equal to prevent the relative minimum distance from dropping. So
we need LC/Γ (D

′) not to be too large compared to the components LC/Γ (Ej).
In the best scenario, the space LC(D) is decomposed in p “copies” of the same
Riemann-Roch space, as for RS codes of dimension a power of 2. Unfortunately,
it is unlikely that all divisors Ej are the same (or even equivalent) if C is not
the projective line. We are then facing a similar issue than in Remark 1 on P1.

Therefore, such a choice of the folding operators does not guarantee the
soundness of our protocol. We thus aim to adapt the idea at the end of Remark
1 to the AG setting. We introduce some balancing functions νj such that, for
every fj ∈ C ′, if the product νjfj also lies in C ′, then the function fj belongs to
the desired Riemann-Roch space LC/Γ (Ej). Defining such a balancing function
νj is tantamount to specify its pole order at the points supporting the divisor D′.
The existence of all the functions νj thus depends on the Weierstrass semigroup
of these points (see [16, Section 6.6] for definition) and does not hold for any
divisor D′. If such functions exist for a divisor D′, we say that D′ is compatible
with D. Finding a convenient divisor D′ compatible with a given divisor D is
definitely the trickiest part in defining the folding operators properly.

To preserve soundness, we ask for D′ to coincide with the divisor Ej with
the largest Riemann-Roch space, say D′ = E0. If E0 is D-compatible, we shall
add additional terms in the folding operators to take account of the balancing
functions. We use more randomness not to double the degree in z, thus avoiding
degrading soundness. For (z1, z2) ∈ F2, we set

Fold [f, (z1, z2)] =

p−1∑
j=0

zj1fj +

p−1∑
j=1

zj2νjfj .

We prove that Fold [·, (z1, z2)] (C) ⊆ C ′, the function Fold [f, (z1, z2)] ∈ FP′

can be locally computed from p values of f , and Fold [·, (z1, z2)] preserves the
distance to the code.

Sequence of “foldable” AG codes. To iterate the folding process, we assume that
the base curve C is endowed with a suitable acting group G that we decompose
into smaller groups to fragment its action and create intermediary quotients

C0 C1 C2 · · · Cr,
π0 π1 π2 πr−1

where the morphism πi : Ci → Ci+1 is the quotient map by a cyclic group
Γi ≃ Z/piZ. A condition on the group G to have such a sequence is the solvability.

A code C = C(C,P, D) is said to be a foldable AG code if we are able to
construct a sequence of AG codes Ci := C(Ci,Pi, Di) that support a family of
randomized folding operators Fold [·, z] : FPi → FPi+1 with the desirable prop-
erties for our IOPP (i.e. Fold [·, z] (Ci) = (Ci+1), local computability, distance
preservation to the code). Moreover, to ensure that the last code Cr has suffi-
ciently small length and to obtain an IOPP with sublinear query complexity, we
require the size of G to be greater than |P|e for a certain e ∈ (0, 1).

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof Verifica-
tion and the Hardness of Approximation Problems 45(3), 501–555 (1998).
https://doi.org/10.1145/278298.278306, extended version of FOCS’92

2. Arora, S., Safra, S.: Probabilistic Checking of Proofs; A New Characterization of
NP. In: 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh,
Pennsylvania, USA, 24-27 October 1992. pp. 2–13. IEEE Computer Society (1992)

3. Babai, L.: Trading Group Theory for Randomness. In: Sedgewick, R. (ed.) Pro-
ceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8,
1985, Providence, Rhode Island, USA. pp. 421–429. ACM (1985)

4. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking Computations in Poly-
logarithmic Time. In: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing, May 5-8, 1991, New Orleans, Louisiana, USA. pp. 21–31 (1991).
https://doi.org/10.1145/103418.103428

5. Beelen, P., Rosenkilde, J., Solomatov, G.: Fast Encoding of AG Codes over Cab

Curves (2020)

6. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon Interac-
tive Oracle Proofs of Proximity. In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Re-
public. pp. 14:1–14:17 (2018)

7. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable Zero Knowledge with
No Trusted Setup. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptol-
ogy - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III. Lecture Notes in
Computer Science, vol. 11694, pp. 701–732. Springer (2019)

8. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive
Oracle Proofs with Constant Rate and Query Complexity. In: 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14,
2017, Warsaw, Poland. pp. 40:1–40:15 (2017)

9. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.:
Linear-Size Constant-Query IOPs for Delegating Computation. In: Hofheinz, D.,
Rosen, A. (eds.) Theory of Cryptography - 17th International Conference, TCC
2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 11892, pp. 494–521. Springer (2019)

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/103418.103428

10. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive Oracle Proofs. In: Theory
of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II. pp. 31–60 (2016)

11. Ben-Sasson, E., Kaplan, Y., Kopparty, S., Meir, O., Stichtenoth, H.: Constant Rate
PCPs for Circuit-SAT with Sublinear Query Complexity. In: 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA. pp. 320–329. IEEE Computer Society (2013)

12. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-Case to Average Case Reductions
for the Distance to a Code. In: 33rd Computational Complexity Conference, CCC
2018, June 22-24, 2018, San Diego, CA, USA. pp. 24:1–24:23 (2018)

13. Ben-Sasson, E., Sudan, M.: Short PCPs with Polylog Query Complexity. SIAM J.
Comput. 38(2), 551–607 (2008)

14. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems (Extended Abstract). In: Sedgewick, R. (ed.) Proceedings of the
17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985, Provi-
dence, Rhode Island, USA. pp. 291–304. ACM (1985)

15. Goppa, V.D.: Codes associated with divisors. Problemy Peredachi Informatsii
13(1), 33–39 (1977)

16. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves over
a Finite Field. Princeton University Press, Princeton (25 Mar 2013).
https://doi.org/https://doi.org/10.1515/9781400847419

17. Kani, E.: The Galois-module structure of the space of holomorphic differentials of
a curve. Journal für die reine und angewandte Mathematik 367, 187–206 (1986)

18. Kattis, A., Panarin, K., Vlasov, A.: RedShift: Transparent SNARKs from List
Polynomial Commitment IOPs. IACR Cryptol. ePrint Arch. 2019, 1400 (2019),
https://eprint.iacr.org/2019/1400

19. Kilian, J.: A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended
Abstract). In: Kosaraju, S.R., Fellows, M., Wigderson, A., Ellis, J.A. (eds.) Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada. pp. 723–732. ACM (1992)

20. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic Methods for Interactive
Proof Systems. In: 31st Annual Symposium on Foundations of Computer Science,
St. Louis, Missouri, USA, October 22-24, 1990, Volume I. pp. 2–10. IEEE Computer
Society (1990)

21. Meir, O.: IP = PSPACE Using Error-Correcting Codes. SIAM J. Comput. 42(1),
380–403 (2013)

22. Micali, S.: Computationally-Sound Proofs. In: Makowsky, J.A., Ravve, E.V. (eds.)
Proceedings of the Annual European Summer Meeting of the Association of Sym-
bolic Logic, Logic Colloquium 1995, Haifa, Israel, August 9-18, 1995. Lecture Notes
in Logic, vol. 11, pp. 214–268. Springer (1995)

23. Mie, T.: Short PCPPs Verifiable in Polylogarithmic Time with O(1) Queries. An-
nals of Mathematics and Artificial Intelligence 56(3–4), 313–338 (Aug 2009)

24. Ron-Zewi, N., Rothblum, R.D.: Local Proofs Approaching the Witness Length [ex-
tended abstract]. In: 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020. pp. 846–857.
IEEE (2020)

https://doi.org/https://doi.org/10.1515/9781400847419
https://eprint.iacr.org/2019/1400

	Interactive Oracle Proofs of Proximity to Algebraic Geometry Codes

