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Abstract. A Boolean function f on n variables is said to be a bent
function if the absolute value of all its Walsh coefficients is 2n/2. Our
main result is a new asymptotic lower bound on the number of Boolean
bent functions. It is based on a modification of the Maiorana–McFarland
family of bent functions and recent progress in the estimation of the
number of transversals in latin squares and hypercubes. A by-product of
our proof is the asymptotics of the logarithm of the numbers of partitions
of the Boolean hypercube into 2-dimensional affine subspaces.
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1 Definitions, preliminaries and main results

Boolean functions and, in particularly, bent functions are widely used in cryptog-
raphy [6, 14, 20], and problems of their existence and enumeration are important.
Asymptotic bounds on the numbers of certain cryptographic functions were ob-
tained, for example, in [5, 15, 21].

The literature on bent functions is usually devoted to their existence and
constructions whereas it does not pay much attention to bounds on cardinalities
of classes of bent functions. The most known bounds are the cardinality of the
Majorana–McFarland family as well as a cumbersome Agievich’s formula [3].

In the following table we present without proof our analysis of the logarithms
of cardinalities for some relatively rich classes of bent functions on n variables.
It is well known that bent functions exist if and only if n is even.



Class and reference Asymptotics of log2 of cardinality Proof

MM family [13] log2 |M(n)| = n
2 · 2

n/2(1 + o(1)) E

completed MM family [14] log2 |M#(n)| = n
2 · 2

n/2(1 + o(1)) E

C class [8] log2 |C(n)| = n
2 · 2

n/2(1 + o(1)) E

D class [8] log2 |D(n)| = n
2 · 2

n/2(1 + o(1)) E

special subclass of PS [14] log2 |PSap(n)| = 2n/2(1 + o(1)) E

Partial Spread family [14] log2 |PS(n)| ≤ n2

8 · 2
n/2(1 + o(1)) H

Agievich bound [3] log2A(n) = n
2 · 2

n/2(1 + o(1)) H

Construction from [1, 4] log2 |K(n/2)−k(n)| ≤ (2k+1)n
2k+1 · 2n/2(1 + o(1)) H

Construction from [1, 4] log2 |K(n/2)−1(n)| = 3n
4 · 2

n/2(1 + o(1)) M

Here letter “E” means that the asymptotics can be easily derived from the
description of a class and “H” stands for the necessity of additional analysis.
The asymptotics in the last row of the table (labeled by “M”) is the main result
of the present paper.

Our lower bound is given by a class (K) of bent functions proposed in [4] that
is a variance of a construction from [1]. A similar construction of bent functions
was also proposed in [11]. Moreover, in [7] and [3] it was considered an analog
of the construction (K) that uses linear subspaces instead of affine ones. We
show that the construction (K) and the mentioned versions produce new bent
functions that were not discovered before.

Let F2 = {0, 1}. The set Fn2 is called the n-dimensional Boolean hypercube
(or the Boolean n-cube). The hypercube Fn2 equipped with scalar multiplication
and coordinate-wise modulo 2 addition ⊕ is an n-dimensional vector space. Its
zero element is 0 = (0, . . . , 0). A set C ⊆ Fn2 is called a k-dimensional affine
subspace if C = a ⊕ S for some a ∈ Fn2 and a k-dimensional linear subspace S
of Fn2 .

For x, y ∈ Fn2 , x = (x1, . . . , xn), y = (y1, . . . , yn), we define their inner
product as

〈x, y〉 = x1y1 ⊕ · · · ⊕ xnyn.

A function f : Fn2 → F2 is said to be a Boolean function on n variables.
The Walsh transform of a Boolean function f is a function Wf : Fn2 → Z

such that

Wf (u) =
∑
x∈Fn

2

(−1)〈u,x〉⊕f(x).

The values Wf (u) are called Walsh coefficients, and the set of all Walsh coeffi-
cients is called the Walsh spectrum of f . The support of the Walsh spectrum is
the set {u : Wf (u) 6= 0}.



A Boolean function f on n variables is said to be a bent function if the Walsh
spectrum of f consists of ±2n/2, and f is a plateaued function if all its Walsh
coefficients are equal to ±2k or 0, for some integer k. We use bn to denote the
number of bent functions on n variables.

Bent functions f and g are affinely equivalent, if there is a nondegenerate
binary matrix L of size n× n and a ∈ Fn2 such that

g(x) = f(Lx⊕ a).

For each bent function f there are no more than 2n
2+n affinely equivalent bent

functions.
It is well known (see [6, 10, 14]) that the algebraic degree (the degree of

the Zhegalkin polynomial) of a bent function f on n variables is at most n/2.

Therefore, the number bn of bent functions is not greater than 2

n/2∑
i=0

(n
i)

, and,
consequently, log2 bn ≤ 2n−1 + 1

2

(
n
n/2

)
. In [9] and [2] there are slightly better

upper bounds on the number of bent functions, but asymptotically both of them
are log2 bn ≤ 2n−1(1 + o(1)). In [16] the following improvement of the upper
bound is stated.

Theorem 1 ([16]). The number bn of bent functions on n variables is not

greater than 63·2
n−6

2·2
n−2(1+o(1)) as n→∞. In particular,

log2 bn ≤ 3 · 2n−3(1 + o(1)).

Note that Tokareva’s conjecture [21] on the decomposition of Boolean func-
tions into a sum of bent functions suggests that log2 bn ≥ 2n−2 + 1

2

(
n
n/2

)
.

Till the class of Maiorana–McFarland functions [13] was considered as the
richest family of bent functions (up to some extensions). This class consists of
functions of the form

f(x, y) = f(x1, . . . , xm, y1, . . . , ym) = ψ(y)

m⊕
i=1

xiπi(y)

and functions that affinely equivalent to them. Here n = 2m, ψ(y) is an arbitrary
Boolean function on m variables, and π is an arbitrary permutation of Fm2 ,
π(y) = (π1(y), . . . , πm(y)).

The choice of permutation π and Boolean function ψ contributes 2n/2! ·22n/2

bent functions to the Maiorana–McFarland family. Taking into account affinely
equivalent functions, we see that the completed Maiorana–McFarland family

contains no more than 2n/2! · 22n/2 · 2n2+n bent functions.
Using the Stirling’s approximation,

log2N ! = N log2N −N log2 e+ o(N), (1)

we conclude that the logarithm of the number bn of bent functions on n variables
satisfies

log2 bn ≥
n

2
· 2n/2 + (1− log2 e) · 2n/2 + o(2n/2).



Our main result is the following asymptotic bound on the number of bent
functions.

Theorem 2. Let bn be the number of bent functions on n variables, where n is
even. Then

log2 bn ≥
3n

4
· 2n/2 − 2 log2 e · 2n/2 + o(2n/2).

For additional information on bent functions and their number the reader is
reffered to papers and monographs [10, 14, 20, 21].

2 Construction of bent functions

For a Boolean variable a ∈ F2, we use a notation a1 = a and a0 = a ⊕ 1.
In particular, ab = 1 ⇔ a = b. Moreover, for x, y ∈ Fn2 , x = (x1, . . . , xn),
y = (y1, . . . , yn), we define xy = xy11 · · ·xynn .

Let us describe a family of Boolean functions that gives the lower bound in
Theorem 2.

Construction (K): Let n = n1 + n2, n2 ≥ n1, n and n2 − n1 be even.
Assume that {Ca}a∈Fn1

2
, Ca ⊆ Fn2

2 is an ordered partition of Fn2
2 into 2n1 affine

subspaces of dimensions n2 − n1. Define a Boolean function f on n variables as

f(x, y) =
⊕
a∈Fn1

2

fa(y)xa,

where x ∈ Fn1
2 , y ∈ Fn2

2 , and fa are plateaued functions such that the support
of the Walsh spectrum of fa is exactly Ca.

To prove that such a function f is well defined, it is sufficient to construct a
plateaued function g such that the support of its Walsh spectrum is equal to any
given affine subspace C of even dimension. This fact was previously established
in [19], but we prove it here for the sake of completeness.

For this purpose, we need the following properties of Walsh coefficients. They
can be found, e.g., in books [14, 20] or can be derived directly from the definitions.

Proposition 1. Let f be a Boolean function on n variables.

1. Suppose that f has a form f(x, y) = g(x), where x ∈ F k2 , y ∈ Fn−k2 , and g is
a Boolean function on k variables. Then for all u ∈ F k2 the Walsh coefficients
Wf (u, 0) = 2n−kWg(u) and Wf (u, v) = 0 if v ∈ Fn−k2 \ {0}.

2. Let f(x) = g(Lx) for some nondegenerate binary matrix L of sizes n × n
and a Boolean function g on n variables. Then Wf (u) = Wg((L

−1)Tu).
3. Assume that f(x) = g(x) ⊕ 〈a, x〉 for some a ∈ Fn2 and a Boolean function

g on n variables. Then Wf (u) = Wg(u⊕ a).

Proposition 2 ([19]). Let C ⊆ Fn2 be an affine subspace of even dimension
k. There exists a one-to-one correspondence between plateaued functions f on n
variables, whose support of the Walsh spectrum is equal to C, and bent functions
g on k variables. Moreover, the absolute value of all nonzero Walsh coefficients
Wf of the function f is 2n−k/2.



Proof. Let g be a bent function on k variables. By the definition, |Wg(u)| = 2k/2

for all u ∈ F k2 . Using Proposition 1(1), we construct a Boolean function h on
n variables all of whose nonzero Walsh coefficients are equal to ±2n−k/2 and
located in a k-dimensional subcube of the Boolean n-cube. With the help of
Proposition 1(2) and (3), we put the support of the Walsh spectrum of h to the
affine subspace C and obtain the desired plateaued function f . Note that the
absolute value of all nonzero Walsh coefficients of f is 2n−k/2.

Reversing this reasoning, we have the equivalence.

It also can be proved that the construction (K) produces only bent functions.

Theorem 3 ([4]). Every function f given by the construction (K) is bent.

In what follows, we denote by Ñk
m the number of ordered partitions of the

space Fm2 into k-dimensional affine subspaces and by Nk
m the number of all

such unordered partitions. (A partition of Fm2 into affine subspaces is unordered
when the order of subspaces in the partition does not matter). Proposition 2 and
Theorem 3 easily imply the following formula for the number of bent functions
in the construction (K).

Theorem 4. Let n = n1 + n2, n2 ≥ n1, and n and n2 − n1 be even. Then the
number Bn of bent functions given by the construction (K) is

Bn = (bn2−n1
)2

n1 · Ñn2−n1
n2

,

where bn2−n1 is the number of bent functions over n2 − n1 variables, Ñn2−n1
n2

is
the number of ordered partitions of the space Fn2

2 into 2n1 affine subspaces of
dimensions n2 − n1.

3 Proof of the lower bound

The key element of the proof of Theorem 2 is an estimation of the number of
ordered partitions of Fm2 into 2-dimensional affine subspaces. Meanwhile, here
we establish an asymptotics of the logarithm of the number of the unordered
ones. For shortness, we denote the number of unordered partitions of Fm2 into
2-dimensional affine subspaces by Nm (Nm = N2

m).

Theorem 5. The number Nm of all unordered partitions of Fm2 into 2-dimen-
sional affine subspaces satisfies

m

2
· 2m + c1 · 2m + o(2m) ≤ log2Nm ≤

m

2
· 2m + c2 · 2m + o(2m),

where c1 = −1− 3
4 log2 e ≈ −2.08, c2 = 7

16 −
11
16 log2 3 ≈ −0.65.

It is easy to see that the numbers of ordered and unordered partitions of Fm2
into k-dimensional affine subspaces are connected in the following way.



Proposition 3. If Ñk
m is the number of ordered partitions of the space Fm2 into

k-dimensional affine subspaces and Nk
m is the number of unordered ones, then

Ñk
m = 2m−k! ·Nk

m.

The proof of Theorem 5 needs more definitions and some auxiliary results on
latin hypercubes, their transversals, and perfect matchings in hypergraphs.

A d-dimensional latin hypercube of order n is a d-dimensional matrix Q =
(qα) of order n whose entries indexed by α = (α1, . . . , αd), αi ∈ {1, . . . , n}, where
Q is filled by n symbols so that each symbol appears in each line (1-dimensional
submatrix) exactly once. A transversal in a latin hypercube is a collection of n
entries hitting each hyperplane ((d−1)-dimensional submatrix) and each symbol
exactly once.

Actually, we are interested in transversals in specific latin hypercubes. Let
Qm be the 3-dimensional latin hypercube of order 2m correspoding to the Cayley
table of the iterated group Zm2 . In more details, its entry qα1,α2,α3

= α4, αi ∈ Fm2 ,
if and only if α1 ⊕ · · · ⊕ α4 = 0.

In what follows, instead of entries of Qm we consider tuples (α1, . . . , α4),
αi ∈ Fm2 satisfying α1 ⊕ · · · ⊕ α4 = 0. Such a notation comprises the index and
the value of an entry of the latin hypercube. Then a transversal in the latin
hypercube Qm is a collection of 2m tuples

(α1
1, . . . , α

1
4), . . . , (α2m

1 , . . . , α2m

4 )

such that for each j = 1, . . . , 4 all αij are different, i = 1, . . . , 2m.
In [12, Theorem 7.2] it was found the asymptotics of the number of transver-

sals in iterated abelian groups. In particular, we have the following estimation
of the number of transversals in Qm.

Theorem 6 ([12]). The number Tm of transversals in the 3-dimensional latin
hypercube Qm of order 2m that is the Cayley table of the iterated group Zm2 is

Tm = (1 + o(1))
2m!3

2m(2m−1)

as m→∞.

There is a connection between the number of unordered partitions of Fm2
into 2-dimensional affine spaces and the number of transversals in Qm.

Proposition 4. The number Nm of unordered partitions of Fm2 into 2-dimen-
sional affine subspaces is not less than the number of transversals in the latin
hypercube Qm−2:

Nm ≥ Tm−2.

Proof. For shortness, we use a notation M = 2m−2. Let a collection R of M
tuples

(α1
1, . . . , α

1
4), . . . , (αM1 , . . . , α

M
4 )



be a transversal in the latin hypercube Qm−2. Recall that αij ∈ F
m−2
2 , αi1⊕· · ·⊕

αi4 = 0 for all i, and for a fixed j all αij are different.
To each such collection R we put in correspondence a collection R′ of M

tuples
(β1

1 , . . . , β
1
4), . . . , (βM1 , . . . , βM4 ),

where βij ∈ Fm2 and

βij =


(αij , 0, 0) if j = 1;
(αij , 0, 1) if j = 2;
(αij , 1, 0) if j = 3;
(αij , 1, 1) if j = 4.

Let us show that R′ is an unordered partition of Fm2 into 2-dimensional affine
subspaces.

First of all, we still have βi1 ⊕ · · · ⊕ βi4 = 0 for all i. It means that each tuple
(βi1, . . . , β

i
4) is a 2-dimensional affine subspace in Fm2 .

Since R is a transversal in the latin hypercube Qm−2, for given α ∈ Fm−22

and j ∈ {1, . . . , 4} there is a unique i ∈ {1, . . . ,M} such that α coincides with
some αji from the collection R. So by the construction, for each β ∈ Fm2 there is

a unique βij from the collection R′ such that β = βji . Since each tuple in R′ has
all different components, we conclude that R′ is a partition of Fm2 .

Thus, R′ is an unordered partition of Fm2 into 2-dimensional affine subspaces,
and different transversals R in Qm−2 give different partitions R′.

To prove the upper bound in Theorem 5, one can use bounds on the number
of perfect matchings in an appropriate hypergraph.

Let H(X,W ) be a hypergraph with the vertex set X and a hyperedge set W .
A hypergraph H is said to be d-uniform if each hyperedge consists of exactly d
vertices and k-regular if each vertex appears in exactly k hyperedges.

A perfect matching in a hypergraph H is a collection of hyperedges that
cover each vertex of a hypergraph exactly once. Let PM(H) denote the number
of perfect matchings in H.

Consider a hypergraph Hm, whose vertex set V (Hm) is the set Fm2 and the
hyperedge set W (Hm) is the set of all affine subspaces in Fm2 :

(x1, . . . , x4) ∈W (Hm)⇔ x1 ⊕ · · · ⊕ x4 = 0.

It is easy to see that Hm is a 4-uniform k-regular hypergraph on 2m vertices,
where k = 1

6 (2m−1)(2m−2). Moreover, the number Nm of unordered partitions
of Fm2 is exactly the number of perfect matchings in Hm.

From [18, Corollary 2] we have the following upper bound on the number of
perfect matchings in uniform regular hypergraphs.

Theorem 7 ([18]). Let H be a d-uniform k-regular hypergraph on n vertices,
d ≥ 3. Then the number PM(H) of perfect matchings in H satisfies

PM(H) ≤ (µ · k)n/d,

where µ = µ(d) = ddd!1/d

d!2 for d ≥ 4 and µ = 3
22/3

for d = 3.



Now we are ready to find the asymptotics of the logarithm of the number of
unordered partitions of Fm2 into 2-dimensional affine subspaces.

Proof (of Theorem 5).
We start with the proof of the lower bound. By Proposition 4, the number

Nm of unordered partitions of Fm2 into 2-dimensional affine subspaces is not less
than the number of transversals in the latin hypercube Qm−2:

Nm ≥ Tm−2.

By Theorem 6, we have that

Tm−2 = (1 + o(1))
2(m−2)!3

2(m−2)·(2m−2−1) as m→∞.

Using the Stirling’s approximation (1), we deduce

log2Nm ≥ log2 Tm−2 =
m

2
· 2m −

(
1 +

3

4
log2 e

)
· 2m + o(2m).

For the upper bound we use Theorem 7 and the fact that Nm is the number
of perfect matchings in the hypergraph Hm:

Nm ≤
(µ

6
· (2m − 1)(2m − 2)

)2m−2

.

log2Nm ≤
m

2
· 2m +

1

4
log2

µ

6
· 2m + o(2m).

Since µ = 44·4!1/4
4!2 , we have log2

µ
6 = 7

4 −
11
4 log2 3.

At last, let us prove the lower bound on the number of bent functions.

Proof (of Theorem 2).
Let n be even, n1 = n/2− 1, n2 = n/2 + 1.
By Theorem 4 and Proposition 3, the number of bent functions given by the

construction (K) for these n1 and n2 is

Bn = 23·2
n/2−1

· 2n/2−1! ·Nn/2+1,

since there are 8 = 23 bent functions on 2 variables.
Using Theorem 5 and the Stirling’s approximation (1), we get

log2Bn ≥
3n

4
· 2n/2 − 2 log2 e · 2n/2 + o(2n/2).

Remark 1. The asymptotically maximal number of bent functions given by the
construction (K) is achieved for n1 = n/2− 1, n2 = n/2 + 1.



Proof. If n1 = n2 = n/2, then the construction (K) coincides with the Maiorana–
McFarland family of bent functions, whose number is smaller than one from
Theorem 2.

Let n1 = n/2 − k, n2 = n/2 + k, where k ∈ N, k ≥ 1. A fundamental

contribution to the number of such bent functions is given by the number Ñ2k
n2

of
ordered partitions of Fn2

2 into 2k-dimensional affine subspaces. For this purpose
we again use a connection to perfect matchings in a special hypergraph and
Theorem 7.

Let Hkn2
be 22k-uniform hypergraph on 2n2 vertices, where each hyperedge is

a 2k-dimensional affine subspace in 2n2 . The degree of this hypergraph (number
of 2k-dimensional affine subspaces containing a given x ∈ Fn2

2 ) is not greater
than 22kn2 . By Theorem 7 and Proposition 3,

Ñ2k
n2
≤ 2n/2−k! · (22k(n/2+k))2

n/2−k

,

since the constant µ in Theorem 7 is not greater than 1. Using the Stirling’s
approximation (1), we see that

log2 Ñ
2k
n2
≤ (n/2− k) · 2n/2−k + 2k(n/2 + k) · 2n/2−k + o(n2n/2) =

2k + 1

2k+1
· n2n/2 + o(n2n/2).

This number is maximal when k = 1.

References

1. Agievich, S.: Bent rectangles. In: Proceedings of the NATO advanced study insti-
tute on Boolean functions in cryptology and information security, NATO Science
for Peace and Security Series D: Information and Communication Security 18,
3–22, Amsterdam (2008).

2. Agievich, S. V.: On the continuation to bent functions and upper bounds on their
number. Prikl. Diskr. Mat. Suppl. 13, 18–21 (2020)

3. Agievich, S. V.: On the representation of bent functions by bent rectangles. In:
Probabilistic Methods in Discrete Mathematics, Proceedings of the Fifth Interna-
tional Petrozavodsk Conference, pp. 121–135, Utrecht, Boston (2002)

4. Baksova, I. P., Tarannikov, Yu. V.: On a construction of bent functions. Surveys
on Applied and Industrial Math. 27(1), 64–66 (2020)

5. Canfield, E. R., Gao, Z., Greenhill, C., McKay, B. D., Robinson, R. W.: Asymptotic
enumeration of correlation-immune Boolean functions. Cryptogr. Commun. 2(1),
111–126 (2010)

6. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press (2020)

7. Carlet, C.: On the confusion and diffusion properties of Maiorana–McFarland’s and
extended Maiorana–McFarland’s functions. In: Special Issue “Complexity Issues in
Coding and Cryptography”, dedicated to Prof. H. Niederreiter on the occasion of
his 60th birthday, pp. 182–204, J. of Complexity 20 (2004)

8. Carlet, C.: Two New Classes of Bent Functions. In: Helleseth T. (eds) Advances in
Cryptology — EUROCRYPT’93. EUROCRYPT 1993. Lecture Notes in Computer
Science 765. Springer, Berlin, Heidelberg (1994)



9. Carlet, C., Klapper, A.: Upper bounds on the number of resilient functions and of
bent functions. In: Proceedings of the 23rd Symposium on Information Theory in
the Benelux, Louvain-La-Neuve, Belgium (2002)

10. Carlet, C., Mesnager, S.: Four decades of research on bent functions. Des. Codes
Cryptogr. 78(1), 5–50 (2016)
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