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Abstract. Linear complexity is an important parameter for arrays that
are used in applications related to information security. In this work we
present new results on the multidimensional linear complexity of periodic
arrays obtained using the definition and method proposed in [2, 6, 11].
The results include a generalization of a bound for the linear complexity,
a comparison with the measure of complexity for multisequences, and
computations of the complexity of arrays with periods that are not rel-
atively prime for which the “unfolding method” does not work. We also
present conjectures for exact formulas and the asymptotic behavior of
the complexity of some array constructions.
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1 Introduction

Multidimensional periodic arrays are useful in applications such as digital wa-
termarking, multiple target recognition and communications [1, 4, 7, 13–15, 20].
It is desirable to have arrays with a variety of sizes. Depending on the particu-
lar application, the array should satisfy properties such as good auto and cross
correlation, balance, and complexity. Randomly generated arrays pose problems
to provide properties such as periodicity and orthogonality. Precomputed arrays
are stored in memory, which imposes a heavy memory burden on some systems.
Hence, it is important to provide algebraic constructions for arrays that have
the desired properties and are easily implemented. Several constructions have
been proposed and their properties analyzed over the years.

Since some of the applications are related to information security, it is par-
ticularly important that the arrays have good complexity, meaning that they
are resistant to Berlekamp-Massey types of attacks, where the complete array
might be deduced from knowing some of its entries. The linear complexity of
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sequences has been widely studied [3, 8, 9]. However, not much work has been
done on the analysis of the complexity of multidimensional arrays. A definition
of the complexity of 2-dimensional arrays viewed as multisequences was given
in [10]. The computation of multidimensional linear complexity of 2-dimensional
arrays with periods that are relatively prime was done by “unfolding” the array
into a sequence and applying the Berlekamp-Massey algorithm in [7, 14]. A new
definition and theory for the computation of multidimensional linear complexity
of arrays was proposed in [2, 6, 11]. This definition applies to any number of di-
mensions, does not have the restrictions of the unfolding method, and it is more
accurate than the joint linear complexity defined for multisequences.

Given that there are few sequences with known formulas for their complexity,
it is expected that formulas for the exact value of the complexity of arrays would
be hard to find. In this work we present a generalization of a bound for the linear
complexity of arrays presented in [2] and conjectures for exact formulas and the
asymptotic behavior of the complexity of some array constructions. It is also
proved that the definition of multidimensional linear complexity in [2, 6, 11] is
more accurate than the definition of joint linear complexity of multisequences.
In addition, we present new computations of the complexity of families of multi-
dimensional arrays for wireless communications and watermarking applications
presented in [13, 14] for which the complexity was unknown.

2 Multidimensional Linear Complexity of Periodic
Arrays

We consider periodic arrays with entries over a finite field Fq, q = pr, p a prime,
and denote the set of non-negative integers by N0. A sequence S = s0, s1, . . .
is a 1-dimensional array and has period n ∈ N if n is the smallest such that
si+n = si for all i ∈ N0. A polynomial f(x) =

∑
i∈Supp(f) fix

i defines a linear

recurrence relation on the sequence S if
∑

i∈Supp(f) fisi+β = 0 for all β ∈ N0,

where Supp(f) is the set of indices of the non-zero terms of f . We say that these
recurrence polynomials are valid for the sequence S and the set of all valid
polynomials for S, V al(S), forms an ideal. The linear complexity of S, L(S),
is the degree of the minimal (monic) generator of V al(S), m(x), which can be
found using the well-known Berlekamp-Massey algorithm. For the generalization
to multiple dimensions it is important to note that L(S) is also the number
of monomials that are not divisible by the lead monomial of m(x). Since the
sequence has period n, the polynomial xn − 1 is in V al(S) and hence L(S) ≤ n.

A 2-dimensional infinite array over Fq is a function A : N2
0 → Fq, and we

denoteA(i, j) by aij . We say thatA is periodic with period vector (n1, n2) ∈ N2

if ai+n1k1,j+n2k2 = ai,j for k1, k2 ∈ N0 and all (i, j) ∈ N2
0. These arrays can be

represented by a subarray of dimensions n2 ×n1 and we do so by associating its
entries to the integer coordinates of the first quadrant of the Cartesian plane.

A polynomial f(x, y) =
∑

i,j∈Supp(f) fi,jx
iyj defines a linear recurrence

relation on the array A if
∑

i,j∈Supp(f) fi,jai+β1,j+β2 = 0 for all β1, β2 ∈ N0.
We say that these polynomials are valid on the array A and the set of all valid



polynomials for A, V al(A), forms an ideal. This ideal might not be generated
by a single polynomial but it has finite generating sets. In particular, V al(A) is
generated by a Gröbner basis with respect to a monomial ordering ≤T that can
be computed using Sakata’s algorithm or the RST algorithm described in [16].
We restricted our description to 2-dimensional arrays in order to simplify the
notation but the previous discussion applies to higher dimensions.

Let ∆V al(A),≤T
denote the set of all monomials that are not divisible by any

lead monomial in V al(A) with respect to ≤T . As a result of the Gröbner bases
properties, ∆V al(A),≤T

is also the set of all monomials that are not divisible by

any lead monomial in a Gröbner basis for V al(A) with respect to ≤T , and hence
can be computed from the Gröbner basis. The size of ∆V al(A),≤T

is invariant

under monomial orderings.

Definition 1. Let A be a multidimensional periodic array and V al(A) be the
ideal of recurrence relations valid on the array. Define the multidimensional
linear complexity L(A) of the array A as the size of any delta set of V al(A);

this is, L(A) =
∣∣∣∆V al(A)

∣∣∣.
If the m-dimensional array A has period (n1, . . . , nm), the polynomials xn1

1 −
1, . . . , xnm

m − 1 are in V al(A) and hence
∣∣∣∆V al(A)

∣∣∣ ≤ n1n2 · · ·nm. With this

we can define the normalized linear complexity of the array as Ln(A) =
L(A)/ (n1n2 · · ·nm), a measure that let us compare the complexity of arrays of
different dimensions and periods.

2.1 Other measures for complexity

A well studied definition for the complexity of a 2-dimensional array with period
(n1, n2) is given by considering the array as an n1-fold multisequence S =
(S1, . . . ,Sn1

), that is, a sequence S of sequences S1, . . . ,Sn1
with period n2. The

joint linear complexity of S, JLn(S), is the degree of a minimal polynomial
that is valid for each Si. As we will see in Example 2 on Section 4.1, this definition
is not as accurate as Definition 1 because it might miss relations among the
entries of different columns. In addition, our approach can be used in arrays of
higher dimensions.

The linear complexity of some of the 2-dimensional arrays presented in [7,
14] was computed by “unfolding” the array using the Chinese Remainder The-
orem in order to construct a sequence, and then compute the complexity of the
resulting sequence using the Berlekamp-Massey algorithm. This method has the
limitation that the periods of the array must be relatively prime. This constrain
is why the complexity of some of the arrays in those papers could not be com-
puted (see Section 3.2). Our approach to multidimensional linear complexity is
consistent with the unfolding method [2, 5] but in addition it allows the compu-
tation of the complexity of any periodic array, advancing the complexity analysis
of constructions of multidimensional arrays.



3 Constructions of multidimensional arrays

In Section 3.2 we present families of arrays from [7, 14] for which the linear com-
plexity could not be computed using the unfolding method. To make this paper
self contained, we first present general constructions for these arrays. For the
sake of simplicity we only consider 2 and 3 dimensional arrays but the methods
can be extended to higher dimensions. Some of the constructions use the index
table W for a finite field Fp2 , with respect to a primitive element α. The entries
of W are defined by wi,j = k if αk = iα+ j. Since 0 is not a power of α, an ∗ is
placed as the entry w0,0.

3.1 Two dimensional Legendre arrays

A binary 2-dimensional Legendre array F1 with period (p, p) is constructed
from an index table W for the finite field Fp2 by setting f0,0 = 0 and taking all
other entries of W modulo 2. Similarly, a ternary 2-dimensional Legendre
array F2 with period (p, p) is constructed from W by setting f0,0 = 0 and
mapping the even entries of W to 1 and the odd entries to −1. This construction
produces solitary Legendre arrays but they will be used by the composition
method as “floors” to construct families of 3-dimensional arrays (see Section 3.2).

3.2 The composition method

Multidimensional arrays can be constructed by composing a shift sequence/array
with a column sequence or an array of suitable dimension [13, 18]. For example,
a 2-dimensional array A with period vector (n1, n2) can be constructed using
a shift sequence S with entries in Zn2

and period n1 to define circular shifts of
columns defined by a sequence C of period n2: ai,j = cj−si (mod n2). The entries
of the shift sequence might also contain an extra symbol, i.e. the entries can be
in Zn2 ∪ {∗}. In this case, the columns corresponding to an undetermined shift
∗ will consist of a sequence of a constant value (see Figure 1).

A 3-dimensional array A with period vector (n1, n2, n3) can be con-
structed using a 2-dimensional shift array S with entries in Zn3

∪{∗} and period
vector (n1, n2) to define circular shifts of columns given by a sequence C of
period n3: ai,j,k = ck−si,j (mod n3). Again, the columns corresponding to an un-
determined shift ∗ will consist of a sequence of a constant value.

Similarly, one can construct a 3-dimensional array A with period vector
(n1, n2, n3) by using a shift sequence S with entries in Zn1

× Zn2
and period

n3 to define circular shifts in both dimensions of “floors” defined by an array F
with period (n1, n2): ai,j,k = f(i,j)−sk , where (i, j)− sk is taken modulo (n1, n2).

Shift sequences/arrays: Some of the shift sequences that can be used to con-
struct 2-dimensional arrays are: exponential quadratic, logarithmic quadratic,
and Moreno-Maric sequences.

To define an exponential quadratic sequence over Zp with period p−1,
consider a quadratic polynomial f(x) = ax2 + bx+ c ∈ Zp[x], a ̸= 0, a primitive



element α in Zp, and take the values of f in p − 1 consecutive powers of α:
S = f

(
α0

)
, f

(
α1

)
, . . . , f

(
αp−2

)
. For example, for α = 3 ∈ Z7, the quadratic

polynomial f(x) = x2 + x+ 1 ∈ Z7[x] gives the exponential quadratic sequence
S = f

(
α0

)
, . . . , f

(
α5

)
= 3, 6, 0, 1, 0, 3.

One can also use quadratic polynomials f(x) over Fq to define shift sequences
of period q − 1 but, since we need the sequence to have entries in Zn, we have
to map the values of f(x) from Fq to Zn. The logarithmic quadratic se-
quence over Fq with period q − 1 is defined by writing the non-zero values in
f
(
α0

)
, f

(
α1

)
, . . . , f

(
αq−2

)
as powers of the primitive root α, f

(
αi
)
= αj , and

letting si = logα
(
f
(
αi
))

= logα
(
αj

)
= j. If f

(
αi
)
= 0, set si = ∗. For exam-

ple, the quadratic polynomial f(x) = x2 + x+ 2α over F32 with α2 = α+ 1 has
values f

(
α0

)
, . . . , f

(
α7

)
= α3, α6, α2, 0, 0, α5, α3, α2 and gives the logarithmic

quadratic shift sequence S = 6, 2, ∗, ∗, 5, 3, 2, 3 used in array A2 of Figure 1.
Under certain conditions on α, the composition fn(x) of a rational func-

tion f(x) = α/(x + β) over Fp with itself, evaluated in Fp ∪ {∞}, produces
a cycle of length p + 1 : 0, f1(0), f2(0), · · · , fp−1(0), fp(0) = ∞, [5, 12, 14, 17].
The Moreno-Maric sequence over Zp with period p + 1 is S = 0, f1(0) =
α, . . . , fp−1(0) = −1, ∗. For example, S = 0, 3, 2, 1,−1, ∗ is the Moreno-Maric
sequence over Z5 with f(x) = 3/(x + 1). Since the ∗ is always at the end of S,
one can remove it to obtain a shortened Moreno-Maric sequence of length
p.

To construct 3-dimensional arrays A with period vector (p, p, p2−1) one can
use the index table W for the finite field Fp2 , which has entries in Zp2−1, and
w0,0 = ∗. The column placed in position (0, 0), that is, all entries a0,0,k, will be
a sequence of a constant value.

Other 3-dimensional arrays with period vector (p, p, p2−1) can be constructed
from the index tableW for the finite field Fp2 but using a vector shift sequence
S where sk = (i, j) and αk = iα+ j.

Column sequences and “floor” arrays: A good option for column sequences
of period p > 2 are Legendre sequences with respect to Zp, which are defined
as ci = 1 if i is a quadratic nonresidue mod p, and ci = 0 otherwise. For example,
C = 0, 0, 0, 1, 0, 1, 1 is the Legendre sequence with respect to Z7. Sidelnikov
sequences with respect to Fq, q odd, are defined as ci = 1 if αi+1 is a quadratic
nonresidue in Fq, where α is a primitive element, and ci = 0 otherwise. These
sequences can be used as columns of length q − 1, where q is odd. For example,
C = 0, 0, 1, 0, 0, 1, 1, 1 is the Sidelnikov column sequence with respect to F32 and
α2 = α+ 1 used in array A2 of Figure 1.

The 2-dimensional Legendre arrays obtained from the index table W for
a finite field Fp2 have period vector (p, p) and can be used as floor arrays.

Constructions for which the complexity was unknown: The unfolding
method was used in [13, 14] to compute the multidimensional linear complexity
of several constructions. However, it cannot be used to compute the complexity
of some arrays described in the same papers. For example, it cannot be used for
arrays of dimensions p × p such as F1: 2-dimensional binary Legendre arrays,



F2: 2-dimensional ternary Legendre arrays, or A1: shortened Moreno-Maric shift
sequences composed with Legendre column sequences. The unfolding method
can neither be used to compute the linear complexity of arrays of dimensions
(q − 1) × (q − 1) such as A2: logarithmic quadratic shift sequences composed
with Sidelnikov column sequences (see Figure 1).

<latexit sha1_base64="N/DTtul/ksp89mnWJK381wIDm6o="></latexit>

C =

1
1
1
0
0
1
0
0

<latexit sha1_base64="hauzAbfRpisTCuX34pwWTrDJI54="></latexit>

A2 =

0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1
1 1 0 0 1 0 1 0
1 0 0 0 1 0 0 0
0 0 0 0 1 1 0 1
0 1 0 0 0 1 1 1
1 1 0 0 0 1 1 1

<latexit sha1_base64="DKflePXk6+EVKCeBo/1DO9LFFf8="></latexit>

S = 6 2 ⇤ ⇤ 5 3 2 3

Fig. 1: Array A2 constructed composing logarithmic quadratic shift sequence S
with Sidelnikov column sequence C and 0, . . . , 0 in the columns corresponding
to ∗.

The linear complexity of 3-dimensional arrays with dimensions p×p×(p2−1)
such as A3: index table shift array composed with a Sidelnikov sequence, A4:
vector shift sequences composed with 2-dimensional binary Legendre arrays or
A5: vector shift sequences composed with 2-dimensional ternary Legendre arrays
cannot be computed using the unfolding method.

4 Results on complexity

4.1 Theoretical results

The following result generalizes a bound for the complexity of arrays presented
as Theorem 1 in [2] to include shift sequences with unknown values. This is, shift
sequences with elements in Zn2

∪ {∗}. Define array A by

ai,j =

{
cj−si (mod n2), si ̸= ∗
0, si = ∗

Theorem 1 Let S be a shift sequence over Zn2 ∪ {∗} with period n1, C be
a column sequence over Fq with period n2, and A be the 2-dimensional array
constructed with the composition method where the column corresponding to ∗
consists of 0’s. Then, Ln(A) ≤ Ln(C), where Ln(·) is the normalized linear
complexity.

Proof. Let m(y) be the minimal polynomial of C, m′(x, y) =
∑

j∈Supp(m) m
′
0,jy

j

= m(y), and γ = (γ1, γ2) ∈ N2
0. If sγ1 ̸= ∗, then, since m ∈ V al(C) implies that∑

j∈Supp(m) mjcj+β = 0 for all β ∈ N0, we have∑
(0,j)∈Supp(m′)

m′
0,ja(0,j)+γ =

∑
j∈Supp(m)

mjaγ1,j+γ2



=
∑

j∈Supp(m)

mjcj+γ2−sγ1
=

∑
j∈Supp(m)

mjcj+β = 0,

where β = γ2 − sγ1
, and the indices of C are considered modulo n2.

If sγ1 = ∗, then aγ1,j+γ2 = 0, and∑
(0,j)∈Supp(m′)

m′
0,ja(0,j)+γ =

∑
j∈Supp(m)

mjaγ1,j+γ2 = 0.

Hence, for any γ ∈ N2
0,
∑

(0,j)∈Supp(m′) m
′
0,ja(0,j)+γ = 0 and m′(x, y) = m(y) ∈

V al(A). This implies that ∆V al(A) cannot contain exponents that are multiples

of ydeg(m). Since S has period n1, x
n1 − 1 ∈ V al(A) and ∆V al(A) cannot con-

tain exponents that are multiples of xn1 . Therefore, Ln(A) = L(A)/(n1n2) ≤
n1 deg(m)/(n1n2) = Ln(C).

Remark 1. The above proposition is also true for 3-dimensional arrays.

The selection of the values in the column corresponding to the undefined
shift (∗) affects the complexity of the array as we can see in the next example.

Example 1. Consider the 5 × 6 array A constructed by composing the shift
Moreno-Maric sequence over Z5, S = 0, 3, 2, 1, 4, ∗ with the column Legendre
sequence C = 0, 0, 1, 1, 0. If the column corresponding to the undetermined shift
∗ is replaced with a column of constant 1’s, then Ln(A) = 13/15, while Ln(C) =
4/5. In this case Ln(A) ≰ Ln(C).

The following refinement for the bound in Theorem 1 for the cases where y−1
divides the minimal polynomial of the sequence C and S is a shift sequence over
Zn2

, was proved in [2].

Proposition 1 Let S be a shift sequence over Zn2 with period n1, C be a column
sequence over Fq with period n2 and minimal polynomial m(y), and A be the 2-
dimensional array constructed with the composition method. If y−1 divides m(y),
then Ln(A) ≤ Ln(C)− n1−1

n1n2
, where Ln(·) is the normalized linear complexity.

Comparison of the linear complexity of an array A with the joint
linear complexity of A as a multisequence: As it was mentioned before,
our definition of multidimensional linear complexity is more accurate than the
joint linear complexity for multisequences.

Proposition 2 Let A be a periodic 2-dimensional array with period (n1, n2).
Then, the normalized linear complexity of A, Ln(A), is smaller or equal than the
normalized joint linear complexity of A considered as a multisequence, JLn(A).
This is, Ln(A) ≤ JLn(A).

Proof. Let m(y) be the joint minimal polynomial of an n1-fold multisequence
A. Then, m(y) is valid for each of the columns ak,0, ak,1, . . . , ak,n2−1, 0 ≤ k <



n1, and
∑

j∈Supp(m) mjak,j+γ2 = 0 for each 0 ≤ k < n1 and all γ2 ∈ N0,

where j + γ2 is considered modulo n2. Let γ = (γ1, γ2) ∈ N2
0 and m′(x, y) =∑

Supp(m) m
′
i,jx

iyj , where m′
i,j = mj for a fixed 0 ≤ i < n1. Then,

∑
(i,j)∈Supp(m′)

m′
i,ja(i,j)+γ =

∑
i

∑
j∈Supp(m)

mjai+γ1,j+γ2 =
∑
i

0 = 0,

since k = i + γ1 is fixed in the inner sum. This implies m′(x, y) ∈ V al(A),
and ∆V al(A) cannot contain xiydeg(m) for any 0 ≤ i < n1. Hence, L(A) =

|∆V al(A)| ≤ n1 deg(m) and Ln(A) ≤ deg(m)/n2 = JLn(A).

There are examples of arrays A for which Ln(A), is strictly smaller than
JLn(A). When an array A constructed with columns from shifts of the same
column sequence C is considered as a multisequence, the minimal polynomial
of C is valid for all the columns. Hence, the normalized joint linear complexity
of A is equal to the normalized linear complexity of C, JLn(A) = JLn(C).
From Proposition 1 when y − 1 divides the minimal polynomial of C one has
Ln(A) < JLn(A). The joint linear complexity of A misses some relations among
entries of different columns.

Example 2. Consider the 7× 6 array A constructed by composing the exponen-
tial quadratic sequence S = 3, 6, 0, 1, 0, 3 with the column Legendre sequence
with respect to Z7, C = 0, 0, 0, 1, 0, 1, 1. Our definition gives normalized linear
complexity Ln(A) = 19/42. If one considers A as a multisequence, the normal-
ized joint linear complexity is JLn(A) = 4/7 which is larger than Ln(A).

4.2 Computational results and conjectures

Our computational results focus on arrays for which the linear complexity could
not be computed with the unfolding method in [7, 14] because the periods of the
arrays were not relatively prime. We computed the complexity of 2-dimensional
p× p arrays from constructions F1,F2 and 3-dimensional p× p× (p2 − 1) arrays
from constructions A3,A4,A5. The complexity was computed using a C++
implementation [19] of the RST algorithm [16]. All the examples satisfy the
conjectured formulas for the normalized linear complexity in Table 1.

Recall that construction A3 uses Sidelnikov column sequences C, A4 uses
array F1 as floor, and A5 uses array F2 as floor. As seen in Table 1, both A4,A5

have the same normalized complexity as their corresponding floor array. In the
case of A3, one can see that as the size of the array increases (size depends on
p), the value Ln(A3) approaches the value of Ln(C).

We do not have a conjecture of a formula for the complexity of arrays from
constructions A1,A2. However, these arrays have the same behaviour of arrays
from constructions A3,A4,A5, in the sense that their complexities approach the
complexity of the column/floor sequence/array. This can be seen in Figure 2,
where the graphs show that the difference of the normalized linear complexity of



Table 1: Conjectured formulas for the normalized linear complexity.

Construction Conjectured Ln(·) Verified for

F1
1
2
− 1

2p2
p ≤ 251

F2 1− 1
p2

3 < p ≤ 109

A3 Ln(C)[1− 1
p2
] p ≤ 19

A4
1
2
− 1

2p2
= Ln(F1) p ≤ 23

A5 1− 1
p2

= Ln(F2) 3 < p ≤ 17

Fig. 2: Difference of normalized complexities Ln(C) − Ln(A) as a function of
the log of the size of A, log(n1n2), where each dot represents an array A with
period vector (n1, n2).

arrays composed with column sequences and the normalized linear complexity
of the column approaches 0 as the size of the array increases.

Based on the above results and the results from [7, 14], we have the following
general conjecture.

Conjecture 1. If A is an array constructed by composing a shift sequence/array
with a column sequence C or floor array F of suitable dimensions, then as the
size of A increases, Ln(A) approaches the normalized complexity of the column
Ln(C) or of the floor Ln(F).

We validated Conjecture 1 by computing the normalized complexity of ar-
rays constructed by composing a randomly generated shift sequence with a ran-
domly generated binary column sequence, each of period n, for n a multiple of
5, 5 ≤ n ≤ 100. We sampled 25 arrays for each n and computed the normalized
complexity of each corresponding random column sequence.
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