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Abstract. In this work, maximum sum-rank distance (MSRD) codes
and linearized Reed-Solomon codes are extended to finite chain rings. It
is proven that linearized Reed-Solomon codes are MSRD over finite chain
rings, extending the known result for finite fields. For the proof, several
results on the roots of skew polynomials are extended to finite chain
rings. These include the existence and uniqueness of minimum-degree
annihilator skew polynomials and Lagrange interpolator skew polynomi-
als. An efficient Welch-Berlekamp decoder with respect to the sum-rank
metric is then provided for finite chain rings.
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1 Introduction

The sum-rank metric [19] generalizes the Hamming and rank metrics. Codes
in the sum-rank metric over finite fields have applications in multishot Net-
work Coding [19, 16], Space-Time Coding with multiple fading blocks [14, 23]
and Distributed Storage [17]. However, codes over rings may be more suitable
for physical-layer Network Coding [4], and finite rings from the complex field
allows for more choices of constellations for Space-Time codes [7, 6].

Maximum sum-rank distance (MSRD) codes are those whose minimum sum-
rank distance attains the Singleton bound. Linearized Reed-Solomon codes [15]
are the MSRD codes with smallest finite-field sizes (thus more computationally
efficient) for the main parameter regimes. They cover a wide range of parameter
values and are the only known MSRD codes compatible with square matrices.
Linearized Reed-Solomon codes recover both generalized Reed-Solomon codes
[22] and Gabidulin codes [5], whenever the sum-rank metric recovers the Ham-
ming metric and the rank metric, respectively. Reed-Solomon codes over rings
were systematically studied for the first time in [21]. Gabidulin codes over Galois
rings were introduced in [7], and later extended to finite principal ideal rings in
[6]. Such families of Gabidulin codes over rings were proposed for Space-Time
Coding in the case of a single fading block in [6, 7], and they were proposed for
physical-layer singleshot Network Coding in [6].



In this work, we introduce MSRD codes and linearized Reed-Solomon codes
over finite chain rings. In Section 2, we collect some preliminaries on finite chain
rings. In Section 3, we define the sum-rank metric over finite chain rings, together
with the corresponding Singleton bound and the definition of MSRD codes.
Section 4 contains the technical tools regarding skew polynomials for linearized
Reed-Solomon codes and their decoding. In Section 5, we define linearized Reed-
Solomon codes over finite chain rings and prove that they are MSRD. In Section
6, we provide a sum-rank metric Welch-Berlekamp decoder for linearized Reed-
Solomon codes over finite chain rings.

2 Preliminaries on Finite Chain Rings

For a general reference, see [18]. A chain ring is a (local) ring whose ideals form
a chain with respect to set inclusion. Throughout this manuscript, we fix a finite
chain ring R. We will denote by m the maximal ideal of R. We will fix the prime
power q = |R/m|, and we denote Fq = R/m, the finite field with q elements.

Let h ∈ R[x] be a monic polynomial of degree m whose image in Fq[x] is
irreducible. Throughout this manuscript, we will fix S = R/(h). The ring S
is a free local Galois extension of R of rank m with maximal ideal M = mS.
Furthermore, the Galois group of R ⊆ S is cyclic of order m, and generated
by a ring automorphism σ : S −→ S such that R = {a ∈ S | σ(a) = a} and
σ(c) = cq, for some primitive element c ∈ S. Moreover, it holds that S/M = Fqm
and ρ(σ(a)) = σ(ρ(a)), for all a ∈ S, where ρ : S −→ S/M = Fqm is the natural
projection map, and σ(b) = bq, for all b ∈ Fqm . We will usually denote a = ρ(a),

and therefore, σ(a) = σ(a), for a ∈ S.
An important feature of local rings is that the group of units is formed by

the elements outside of the maximal ideal. That is, R∗ = R \m and S∗ = S \M.
Finally, the following technical lemma will be useful for our purposes. Items 2
and 3 follow from Item 1, which is [18, p. 92, ex. V.14].

Lemma 1. Let β1, β2, . . . , βr ∈ S be R-linearly independent (thus r ≤ m).

1. There are βr+1, . . . , βm ∈ S such that β1, β2, . . . , βm are a basis of S over R.
2. The projections β1, β2, . . . , βr ∈ Fqm are Fq-linearly independent.
3. β1, β2, . . . , βr ∈ S∗.

3 MSRD Codes on Finite Chain Rings

The sum-rank metric over fields was first defined in [19] but was previously used
in [14, Sec. III]. The rank metric was extended to finite principal ideal rings in
[6]. In this section, we will introduce the sum-rank metric for finite chain rings.

Since R is a finite chain ring, then it is a principal ideal ring. Therefore, given
A ∈ Rm×n, there exist two invertible matrices P ∈ Rm×m and Q ∈ Rn×n, and
a diagonal matrix D = Diag(d1, d2, . . . , dr) ∈ Rm×n, with r = min{m,n}, such
that A = PDQ. The elements d1, d2, . . . , dr ∈ R are unique up to multiplication



by units and the diagonal matrix D is called the Smith normal form of A. Hence
we may define ranks and free ranks as in [6, Def. 3.3].

Definition 1. Given A ∈ Rm×n with Smith normal form D = Diag(d1, . . . , dr)
∈ Rm×n, r = min{m,n}, we define the rank and free rank of A, respectively, as

rk(A) = |{i ∈ [r] | di 6= 0}| and frk(A) = |{i ∈ [r] | di ∈ R∗}|.

We will work with linear codes in Sn. To that end, we will translate the rank
metric from Rm×n to Sn as in [6, Sec. III-B]. For a positive integer t and an
ordered basis α = (α1, α2, . . . , αm) ∈ Sm of S over R, we define Mα : St −→
Rm×t by

Mα (c) =


c1,1 c1,2 . . . c1,t
c2,1 c2,2 . . . c2,t

...
...

. . .
...

cm,1 cm,2 . . . cm,t

 ∈ Rm×t, (1)

where c =
∑m
i=1 αi(ci,1, ci,2, . . . , ci,t) ∈ Rt, for i = 1, 2, . . . ,m. We define rk(c) =

rk (Mα (c)) and frk(c) = frk (Mα (c)), which is independent of α [6].
We may now define the sum-rank metric for the ring extension R ⊆ S.

This definition coincides with the classical one [14, 19] when R and S are fields.
Over finite chain rings, this definition coincides with the Hamming metric when
n1 = n2 = . . . = n` = 1 and with rank metric as above [6] when ` = 1.

Definition 2 (Sum-rank metric). Consider positive integers n1, n2, . . . , n`
and n = n1 +n2 + · · ·+n`. We define the sum-rank weight of c ∈ Sn over R for
the length partition n = n1 + n2 + · · ·+ n` as

wtSR(c) =
∑̀
i=1

rk
(
c(i)
)
,

where c =
(
c(1), c(2), . . . , c(`)

)
and c(i) ∈ Sni , for i = 1, 2, . . . , `. We define

the sum-rank metric dSR : S2n −→ Sn over R for the length partition n =
n1 + n2 + · · ·+ n` by dSR(c,d) = wtSR(c− d), for c,d ∈ Sn. For an arbitrary
code C ⊆ Sn, we define dSR(C) = min{dSR(c,d) | c,d ∈ C, c 6= d}.

The sum-rank metric is indeed a metric by [6, Th. 3.9]. The subring R and
the length partition n = n1 +n2 + · · ·+n` will not be specified unless necessary.

The next lemma can be proven as [17, Th. 1] using the Smith normal form.

Lemma 2. For c ∈ Sn, R ⊆ S and the length partition n = n1 + · · ·+ n`,

wtSR(c) = min{wtH(cDiag(A1, A2, . . . , A`))|Ai ∈ Rni×ni invertible, 1 ≤ i ≤ `}.

Lemma 2 implies the Singleton bound for the sum-rank metric over R ⊆ S,
which recovers [15, Prop. 34] for R and S fields, and [6, Prop. 3.20] when ` = 1.

Proposition 1 (Singleton bound). Given an arbitrary code C ⊆ Sn (linear
or not), and setting k = log|S| |C|, it holds that dSR(C) ≤ n− k + 1.



We define MSRD codes as follows, which recovers MSRD codes [15, Th. 4]
when R and S are fields, MDS codes over finite chain rings when n1 = n2 =
. . . = n` = 1, and MRD codes over finite chain rings [6, Def. 3.21] when ` = 1.

Definition 3 (MSRD codes). We say that a code C ⊆ Sn is a maximum sum-
rank distance (MSRD) code over R for the length partition n = n1 +n2 + · · ·+n`
if k = log|S| |C| is a positive integer and dSR(C) = n− k + 1.

From Lemma 2, we deduce the following auxiliary lemma, which we will use
in Section 5 to prove that linearized Reed-Solomon codes are MSRD.

Lemma 3. Given an arbitrary code C ⊆ Sn (linear or not) such that k =
log|S| |C| is a positive integer, it holds that C is MSRD for R ⊆ S and the length
partition n = n1 + n2 + · · · + n` if, and only if, the code CDiag(A1, A2, . . . , A`)
is MDS for all invertible matrices Ai ∈ Rni×ni , for i = 1, 2, . . . , `.

4 Skew Polynomials on Finite Chain Rings

The ring of skew polynomials [20] over S with morphism σ is the set S[x;σ]
formed by elements F = F0 + F1x + F2x

2 + · · · + Fdx
d, for F0, F1, . . . , Fd ∈ S

and d ∈ N. If Fd 6= 0, we define the degree of F as deg(F ) = d, and we say
that F is monic if Fd = 1. If F = 0, then we define deg(F ) = −∞. Moreover,
sums of skew polynomials and products with scalars on the left are defined as in
the case of conventional polynomials. However, the product is given by the rules
xa = σ(a)x and xixj = xi+j , for a ∈ S and i, j ∈ N.

In order to define linearized Reed-Solomon codes for the extension R ⊆ S,
we will need the following definitions. We start with the following operators,
considered in [10, Def. 3.1] and [11, Eq. (2.7)] for division rings.

Definition 4 ([10, 11]). Fix a ∈ S and define the R-linear operator Dia : S −→
S by Dia(β) = σi(β)σi−1(a) · · ·σ(a)a, for all β ∈ S, and all i ∈ N. Given F =∑d
i=0 Fix

i ∈ S[x;σ] and (a, β) ∈ S2, where d ∈ N, we define

Fa(β) =

d∑
i=0

FiDia(β) ∈ S.

We will also need the concept of conjugacy [8, 9].

Definition 5 (Conjugacy [8, 9]). We say that a, b ∈ S are conjugate in S
with respect to σ if there exists β ∈ S∗ such that b = aβ, where aβ = σ(β)aβ−1.

The following result follows by combining [8, Th. 23] and [9, Th. 4.5], and
was presented in the following form in [12, Th. 2.1] for general division rings.

Lemma 4 ([8, 9]). If a1, a2, . . . , a` ∈ F∗qm are pairwise non-conjugate (with re-
spect to σ) and F ∈ Fqm [x;σ] is not zero, then

∑̀
i=1

dimFq
(ker(Fai)) ≤ deg(F ).



We now extend this result to the finite chain rings R ⊆ S. To this end, we
define the free rank of an R-module M as the maximum size of an R-linearly
independent subset of M . We will denote it by frkR(M).

Theorem 1. Let a1, a2, . . . , a` ∈ S∗ be such that ai − aβj ∈ S∗, for all β ∈ S∗,
and for 1 ≤ i < j ≤ `. For any non-zero monic F ∈ S[x;σ], we have

∑̀
i=1

frkR(F−1ai (M)) ≤ deg(F ).

Proof. If F = F0 + F1x + · · · + Fdx
d, where F0, F1, . . . , Fd ∈ S, denote F =

F 0 + F 1x+ · · ·F dxd ∈ Fqm [x;σ]. We have the following two facts:
1) We have that frkR(F−1a (M)) ≤ dimFq (ker(F a)). We now prove this claim.

From Definition 4 and the fact that σ(a) = σ(a), F a(β) = Fa(β), for all a, β ∈ S.

This means that, if Fa(β) ∈M, then F a(β) = Fa(β) = 0. Therefore, F−1a (M) ⊆
ker(F a). By Item 2 in Lemma 1, frkR(F−1a (M)) ≤ dimFq

(F−1a (M)). Thus we

conclude that frkR(F−1a (M)) ≤ dimFq
(F−1a (M)) ≤ dimFq

(ker(F a)).

2) ai 6= aβj for 1 ≤ i < j ≤ ` and β ∈ F∗qm , since β ∈ S∗ and ai − aβj /∈M.
By 2), Lemma 4 applies and, using 1) and the fact that F is monic,

∑̀
i=1

frkR(F−1ai (M)) ≤
∑̀
i=1

dimFq
(ker(F ai)) ≤ deg(F ) = deg(F ). ut

We will also need the following alternative notion of evaluation [8, 9] based
on right Euclidean division [20].

Definition 6 ([8, 9]). Given a skew polynomial F ∈ S[x;σ] and a ∈ S, we
define the remainder evaluation of F at a, denoted by F (a), as the only scalar
F (a) ∈ S such that there exist Q ∈ S[x;σ] with F = Q · (x− a) + F (a).

We also need the following lemma, which is [9, Th. 2.7] and [8, Lemma 1].

Lemma 5. Let F,G ∈ S[x;σ], a ∈ S and β ∈ S∗.

1. If G(a) = 0 then (FG)(a) = 0. If β = G(a) ∈ S∗ then (FG)(a) = F (aβ)G(a).
2. Fa(β) = F (aβ)β.

We will show that annihilator skew polynomials and Lagrange interpolating
skew polynomials exist for sequences of evaluation points as follows.

Definition 7. Consider vectors a = (a1, a2, . . . , a`) ∈ (S∗)` and βi = (βi,1, βi,2,
. . . , βi,ni) ∈ Sni , for i = 1, 2, . . . , `. Set β = (β1,β2, . . . ,β`). We say that (a,β)
satisfies the MSRD property if the following conditions hold:

1. ai − aβj ∈ S∗, for all β ∈ S∗ and for 1 ≤ i < j ≤ `.
2. βi,1, βi,2, . . . , βi,ni

are linearly independent over R, for i = 1, 2, . . . , ` and, by
Item 3 in Lemma 1, they lie in S∗.



The next step is the existence of minimal annihilator skew polynomials.

Theorem 2. Let (a,β) as in Definition 7, satisfying the MSRD property. There

are γi,j ∈ S∗ and skew polynomials of degree deg(Gi,j) =
∑i−1
u=1 nu + j,

Gi,j =
(
x− aγi,ji

)
· · ·
(
x− aγi,1i

) (
x− a

γi−1,ni−1

i−1

)
· · ·
(
x− aγ1,11

)
, such that{

Gi,j(a
βu,v
u ) = 0, if 1 ≤ u ≤ i− 1, or if u = i and 1 ≤ v ≤ j,

Gi,j(a
βu,v
u ) ∈ S∗, if i+ 1 ≤ u ≤ `, or if u = i and j + 1 ≤ v ≤ ni,

for j = 1, 2, . . . , ni and i = 1, 2, . . . , `.

Proof. We prove the proposition by induction in the pair (i, j). For the basis

step, we only need to define G1,1 = x− aβ1,1

1 . We have G1,1,a1(β1,1) = 0 by Item
2 in Lemma 5. On the other hand, since deg(G1,1) = 1 and it is non-zero and
monic, then G1,1,au(βu,v) ∈ S∗, if (u, v) 6= (1, 1), by Theorem 1.

Now, we have two cases for the inductive step. Either we go from Gi,j to
Gi,j+1, if j < ni, or from Gi,ni

to Gi+1,1 if i < `. The process stops when i = `
and j = n`. We will only develop the first case of induction step.

Assume thatGi,j satisfies the proposition and j < ni. In particular,Gi,j(a
βi,j+1

i )

∈ S∗. Define γi,j+1 = Gi,j(a
βi,j+1

i )βi,j+1 ∈ S∗ andGi,j+1 =
(
x− aγi,j+1

i

)
Gi,j . By

Lemma 5 and the assumptions onGi,j , we haveGi,j+1(a
βu,v
u ) = 0, if 1 ≤ u ≤ i−1,

or if u = i and 1 ≤ v ≤ j + 1. Since Gi,j+1 has such zeros, it is non-zero,

monic and of degree
∑i−1
u=1 nu + j + 1, then we deduce from Theorem 1 that

Gi,j+1(a
βu,v
u ) ∈ S∗, if i+ 1 ≤ u ≤ `, or if u = i and j + 2 ≤ v ≤ ni. ut

We immediately deduce the following two consequences.

Corollary 1. Let (a,β) be as in Definition 7, and satisfying the MSRD prop-
erty. Then there exists a monic skew polynomial F ∈ S[x;σ] such that deg(F ) =
n1 + n2 + · · ·+ n` and Fai(βi,j) = 0, for j = 1, 2, . . . , ni and i = 1, 2, . . . , `.

Corollary 2. Let (a,β) be as in Definition 7, and satisfying the MSRD prop-
erty. For j = 1, 2, . . . , ni and i = 1, 2, . . . , `, there is a monic skew polynomial
Fi,j ∈ S[x;σ] such that deg(F ) = n1 + n2 + · · · + n` − 1, Fi,j,ai(βi,j) = 1, and
Fi,j,au(βu,v) = 0, for all v = 1, 2, . . . , ni and u = 1, 2, . . . , ` with u 6= i or v 6= j.

We may also obtain the following generalization of [6, Prop. 3.15].

Corollary 3. Let a1, a2, . . . , a` ∈ S be such that ai − aβj ∈ S∗, for all β ∈ S∗
and for 1 ≤ i < j ≤ `. Let ui ∈ Sni and let ti = rk(ui), for i = 1, 2, . . . , `. Set
t = t1 + t2 + · · ·+ t`. Then there exists a monic skew polynomial F ∈ S[x;σ] such
that deg(F ) = t and Fai(ui,j) = 0, for j = 1, 2, . . . , ni and for i = 1, 2, . . . , `.

Proof. From the Smith normal form, there are αi ∈ Sti and Bi ∈ Rti×ni such
that ui = αiBi, frk(αi) = ti and rk(Bi) = ti, for i = 1, 2, . . . , `. In particular,
(a,α) satisfies the MSRD property (Definition 7), where a = (a1, a2, . . . , a`)



and α = (α1,α2, . . . ,α`). By Corollary 1, there exists a monic skew polynomial
F ∈ S[x;σ] such that deg(F ) = t and Fai(αi,j) = 0, for j = 1, 2, . . . , ti and for
i = 1, 2, . . . , `. Since the map Fai is R-linear and ui = αiBi, we deduce that
Fai(ui,j) = 0, for j = 1, 2, . . . , ni and for i = 1, 2, . . . , `, and we are done. ut

We now extend the matrices from [15, p. 604] to finite chain rings.

Definition 8. Consider vectors a = (a1, a2, . . . , a`) ∈ S` and βi = (βi,1, βi,2, . . . ,
βi,ni

) ∈ Sni , for i = 1, 2, . . . , `. Set β = (β1,β2, . . . ,β`) and n = n1 +n2 + · · ·+
n`. For k = 1, 2, . . . , n, we define the extended Moore matrix

Mk(a,β) =


β1,1 . . . β1,n1 . . . β`,1 . . . β`,n`

Da1(β1,1) . . . Da1(β1,n1
) . . . Da`(β`,1) . . . Da`(β`,n`

)
...

. . .
...

. . .
...

. . .
...

Dk−1a1 (β1,1) . . . Dk−1a1 (β1,n1) . . . Dk−1a`
(β`,1) . . . Dk−1a`

(β`,n`
)

 .

The following result follows from Corollary 2 as in the classical case.

Theorem 3. Let (a,β) as in Definition 7, satisfying the MSRD property. Let
n = n1 + · · ·+ n`. Then Mn(a,β) is invertible. In particular, given ci,j ∈ S, for
j = 1, 2, . . . , ni and i = 1, 2, . . . , `, there exists a unique F ∈ S[x;σ] such that
deg(F ) ≤ n− 1, and Fai(βi,j) = ci,j, for j = 1, 2, . . . , ni and i = 1, 2, . . . , `.

5 Linearized Reed-Solomon Codes

In this section, we extend linearized Reed-Solomon codes [15] to finite chain
rings, providing the first construction of MSRD codes over finite chain rings.

The following definition is [15, Def. 31] when R and S are fields. Over finite
chain rings, it coincides with Gabidulin codes [6, Def. 3.22] when ` = 1 and
generalized Reed-Solomon codes [21, Def. 22] when m = n1 = . . . = n` = 1.

Definition 9. Let (a,β) as in Definition 7, satisfying the MSRD property. For
k = 1, 2, . . . , n, we define the k-dimensional linearized Reed-Solomon code as the
linear code Ck(a,β) ⊆ Sn with generator matrix Mk(a,β) (Definition 8).

The main result of this section is the following. It coincides with [15, Th. 4]
when R and S are fields, with [6, Th. 3.24] over finite chain rings when ` = 1, and
with [21, Prop. 23 & Cor. 24] over finite chain rings when m = n1 = . . . = n` = 1.

Theorem 4. Let (a,β) as in Definition 7, satisfying the MSRD property. For
k = 1, 2, . . . , n, the code Ck(a,β) ⊆ Sn is a free S-module of rank k and an
MSRD code over R for the length partition n = n1 + · · ·+ n`.

Proof. Let Ai ∈ Rni×ni be invertible, for i = 1, 2, . . . , `. By the R-linearity of
σ, we have that Ck(a,β)Diag(A1, A2, . . . , A`) = Ck(a,βDiag(A1, A2, . . . , A`)),
which is also a linearized Reed-Solomon code, since (a,βDiag(A1, A2, . . . , A`))
also satisfies the MSRD property since A1, A2, . . . , A` are invertible. Therefore,
from Lemma 3, we see that we only need to prove that Ck(a,β) is MDS and a
free S-module of rank k. Both properties follow from the fact that any k × k
square submatrix of Mk(a,β) is invertible by Theorem 3. ut



Finally, we show how to explicitly construct sequences (a,β) satisfying the
MSRD property. In this way, we have explicitly constructed linearized Reed-
Solomon codes for the finite chain ring extension R ⊆ S. The R-linearly inde-
pendent elements βi,1, βi,2, . . . , βi,ni

∈ S∗ can be chosen as subsets of any basis
of S over R, for i = 1, 2, . . . , `. We now show how to choose a1, a2, . . . , a` ∈ S.

Proposition 2. Let 1 ≤ ` ≤ q − 1 and let γ ∈ F∗qm be a primitive element, that

is, F∗qm = {γ0, γ1, . . . , γqm−2}. Such an element always exists [13, Th. 2.8]. Take

a1, a2, . . . , a` ∈ S∗ such that ai = γi−1, for i = 1, 2, . . . , `. Then a1, a2, . . . , a` ∈
S∗ are such that ai − aβj ∈ S∗, for all β ∈ S∗ and all 1 ≤ i < j ≤ `.

In particular, we have shown the existence of linear MSRD codes of any rank
for the extension R ⊆ S for the following parameters.

Corollary 4. Let 1 ≤ ` ≤ q − 1, 1 ≤ ni ≤ m for i = 1, 2, . . . , `, 1 ≤ k ≤ n, and
n = n1 + · · · + n`. Then there exists a code C ⊆ Sn that is a free S-module of
rank k and is MSRD over R for the length partition n = n1 + · · ·+ n`.

6 A Welch-Berlekamp Decoder

In this section, we present a cubic-complexity Welch-Berlekamp sum-rank error-
correcting algorithm for the linearized Reed-Solomon codes from Definition 9.
The decoder is based on the original one by Welch and Berlekamp [2]. Welch-
Berlekamp decoders for the sum-rank metric in the case of fields were given in
[3, 16, 1], listed in decreasing order of computational complexity.

Fix (a,β) as in Definition 7, satisfying the MSRD property. We will set bi,j =
σ (βi,j) aiβ

−1
i,j , for j = 1, 2, . . . , ni and for i = 1, 2, . . . , `. Next fix a dimension k

with 1 ≤ k ≤ n− 1, and consider the linearized Reed–Solomon code Ck(a,β) ⊆
Sn (Definition 9). The number of sum-rank errors that it can correct is

t =

⌊
dSR (Ck(a,β))− 1

2

⌋
=

⌊
n− k

2

⌋
. (2)

Let c ∈ Ck(a,β) be any codeword, let e ∈ Sn be an error vector such that
wtSR(e) ≤ t, and define the received word as

r = c + e ∈ Sn. (3)

Since wtSR(e) ≤ t and 2t + 1 ≤ dSR (Ck(a,β)), there is a unique solution c ∈
Ck(a,β) to the decoding problem. Define the auxiliary vectors c′ = c·Diag(β)−1,
e′ = e · Diag(β)−1, and r′ = r · Diag(β)−1. By Lagrange interpolation (Theo-
rem 3) and Lemma 5, there exist unique F,G,R ∈ S[x;σ], all of degree less than
n, such that F (b) = c′, G(b) = e′, and R(b) = r′, which denote component-
wise remainder evaluation (Definition 6). Moreover, since c ∈ Ck(a,β), then
deg(F ) < k. Following the original Welch–Berlekamp decoder, we want to find
a non-zero monic skew polynomial L ∈ S[x;σ] with deg(L) ≤ t and such that

(LR)(b) = (LF )(b). (4)



However, since we do not know F , we look instead for non-zero L,Q ∈ S[x;σ]
such that L is monic, deg(L) ≤ t, deg(Q) ≤ t+ k − 1 and

(LR)(b) = Q(b). (5)

In the following two lemmas, we show that (4) and (5) can be solved, and
once L and Q are obtained, F may be obtained by left Euclidean division.

Lemma 6. There exists a non-zero monic skew polynomial L ∈ S[x;σ] with
deg(L) ≤ t satisfying (4). In particular, there exist non-zero L,Q ∈ S[x;σ] such
that L is monic, deg(L) ≤ t, deg(Q) ≤ t+ k − 1 and (5) holds.

Proof. By Corollary 3, there exists a non-zero monic skew polynomial L ∈ S[x;σ]
such that deg(L) ≤ t and Lai(ei,j) = 0, for j = 1, 2, . . . , ni and for i = 1, 2, . . . , `.
The reader may verify from the definitions and Lemma 5 that

(LG)(bi,j) = Lbi,j (G(bi,j)) = Lbi,j (e′i,j) = Lai(ei,j) = 0,

for j = 1, 2, . . . , ni and for i = 1, 2, . . . , `. Since R(b) = F (b)+G(b), we conclude
that (L(R−F ))(b) = (LG)(b) = 0 by Lemma 5. In other words, L satisfies (4).

ut

Lemma 7. If L,Q ∈ S[x;σ] are such that L is monic, deg(L) ≤ t, deg(Q) ≤
t+ k − 1 and (5) holds, then Q = LF .

Proof. First, by (5) and the product rule (Item 1 in Lemma 5), if (F −R)(bi,j) =
0, then (LF −Q)(bi,j) = 0, for j = 1, 2, . . . , ni and for i = 1, 2, . . . , `. From this
fact, and using Lemmas 2 and 5, the reader may deduce that

wtSR ((LF −Q)(b) ·Diag(β)) ≤ wtSR ((F −R)(b) ·Diag(β)) ≤ t.

Therefore, we may apply Lemma 6 to LF and Q, instead of F and R. Thus
there exists a non-zero monic L0 ∈ S[x;σ] such that deg(L0) ≤ t and (L0(LF −
Q))(b) = 0. Now observe that deg (L0(LF −Q)) ≤ 2t + k − 1 < n. By Lemma
5 and Theorem 3, we conclude that L0(LF −Q) = 0. Since L0 is non-zero and
monic, we conclude that LF = Q and we are done. ut

Finally, once we find non-zero L,Q ∈ S[x;σ] such that L is monic, deg(L) ≤ t,
deg(Q) ≤ t+k−1 and (5) holds, then we may find F by left Euclidean division,
since Q = LF by Lemma 7 above. Left Euclidean division is possible in S[x;σ]
since σ is invertible. Finding L and Q using R and b (which are known) amounts
to solving a system of linear equations derived from (5) using the Smith normal
form, as in [6, Sec. III-D]. Using this method, the decoding algorithm has an
overall complexity of O(n3) operations over the ring S.
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17. Mart́ınez-Peñas, U., Kschischang, F.R.: Universal and dynamic locally repairable
codes with maximal recoverability via sum-rank codes. IEEE Trans. Info. Theory
65(12), 7790–7805 (2019)

18. McDonald, B.: Finite rings with identity, vol. 28. Marcel Dekker Inc. (1974)
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