
An analysis of Coggia-Couvreur Attack on
Loidreau’s Rank-metric public-key encryption

scheme in the general case

Pierre Loidreau1 and Ba-Duc Pham2

1 Univ Rennes, DGA MI, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
pierre.loidreau@univ-rennes1.fr

2 Univ Rennes, IRMAR - UMR 6625, F-35000 Rennes, France
ba-duc.pham@univ-rennes1.fr

Abstract. In this paper we show that in the case where the public-
key can be distinguished from a random code in Loidreau’s encryption
scheme, then Coggia-Couvreur attack can be extended to recover an
equivalent secret key. This attack can be conducted in polynomial-time
if the masking vector space has dimension 3, thus recovering the results
of Ghatak.

Keywords: Rank metric codes, Gabidulin codes, code based cryptography,
cryptanalysis

Introduction

Since the use of Fqm-linear rank metric permits to design a short public key
encryption scheme, one of the directions of code based cryptography consists in
instantiating McEliece encryption scheme [1] with codes in rank metric, [2, 3].

Because of the structure of Gabidulin codes, any cryptosystem instantiated
with codes containing Gabidulin codes not sufficiently scrambled was attacked
[4]. In 2017, Loidreau proposed a scheme based on Gabidulin codes masked with
a small dimensional vector space [5]. If the dimension of the vector space is too
small, then there exists a very simple polynomial-time distinguishing algorithm.

The question was to know if distinguishing is enough to break. Coggia and
Couvreur [6] showed that in the case where the dimension of the masking space
is 2, a decryption procedure can be recovered in polynomial-time. More recently,
Ghatak [7] presented an extension of the Coggia–Couvreur attack to deal with
secret matrices chosen over subspaces of dimension 3.

In this work, we show that this can be extended to any dimension and we
can include the previous results. Moreover we are able to prove rigorously under
some assumptions the efficiency of the attack.

1

1 The encryption scheme

1.1 Generalities

Let G a random generator matrix of a Gabidulin code Gk(g). Fix an integer
λ ≤ m and an Fq-vector subspace V of Fqm of dimension λ. Let P ∈ GL(n,Fqm)
whose entries are all in V. Then, let

Gpub = GP
−1

– KeyGen: Public key (Gpub, t) where t = ⌊n−k
2λ

⌋
Secret key (g,P)

– Encryption: Given a plaintext m ∈ Fk
qm , choose e ∈ Fn

qm of rank weight t.
The ciphertext is:

c = mGpub + e

– Decryption:
• Compute cP = mG + eP .
• Decode in Gk(g) and rk(eP) ≤ tλ ≤

n−k
2

Let us denote by Cpub the code generated by Gpub and by C⊥
pub, the dual

code. Let Hpub be a generator matrix of C⊥
pub. It is immediate that

Hpub = HsecP
T

where Hsec is a parity-check matrix of Gk(g).

1.2 Goal of a reconstructing attack and solution set

Our main goal is to design a reconstructing attack from the knowledge of C⊥
pub

and under some particular sets of parameters.
W.l.o.g, one can suppose that 1 ∈ V. Suppose that V = ⟨1, β1, . . . , βλ−1⟩Fq

for some {βi}λ−1i=1 ∈ Fqm\Fq. Therefore, P T can be decomposed into

P
T
= P0 +

λ−1

∑
i=1

βiPi

where Pi are n × n matrices with entries in Fq not necessarily invertible.
Let C⊥

sec the dual code of Gk(g). Thus, C⊥
sec = Gn−k(a) for some a ∈ Fn

qm with
rk(a) = n. We define

h0 = aP0,h1 = aP1, . . . ,hλ−1 = aPλ−1

To be convenient, we denote for i ∈ Z, [i] = q
i

Lemma 1. The code C⊥
pub is spanned by h

[i]
0 +

λ−1

∑
j=1

βjh
[i]
j for i = 0, . . . , n− k− 1

2

Let us define the so-called solution set of the encryption scheme

Definition 1 (Solution set). The set S of all (h, β⃗) ∈ (Fn
qm)λ × Fλ−1

qm such
that

C⊥
pub = ⟨h[i]

0 +
λ−1

∑
j=1

βjh
[i]
j , i = 0, . . . , n − k − 1⟩ (1)

where ∀j = 0, . . . , λ− 1, hj has rank n and ⟨1, β1, . . . , βλ−1⟩Fq
has dimension λ

is called solution set of the encryption scheme.

It is obvious that finding an element of the solution set S implies the ability
to design a polynomial-time decryption algorithm. What we call a reconstruct-
ing attack corresponds to finding an element in S. The solution set S has the
following properties.

Proposition 1. Let (h, β⃗) ∈ (Fn
qm)λ×Fλ−1

qm . Let A = (aj,i)λ−1j,i=0 ∈ GLλ(Fq). Let
us define the following group action on (Fn

qm)λ × Fλ−1
qm by A ⋅ (h, β⃗) = (h′

, β⃗ ′)
where

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

hj =
aj,0h

′
0 +∑λ−1

i=1 aj,ih
′
i

a0,0 +∑λ−1
i=1 ai,0βi

, j = 0, . . . , λ − 1

β
′
j =

a0,j +∑λ−1
i=1 ai,jβi

a0,0 +∑λ−1
i=1 ai,0βi

, j = 1, . . . , λ − 1

1. Then if (h, β⃗) ∈ S we have (h′
, β⃗ ′) = A ⋅ (h, β⃗) ∈ S.

2. Moreover let A = {B ∈ GLλ(Fq)∣∃c ∈ F∗
q ,BA

−1
= cIλ} . Then, for any

B ∈ A, and for any (h, β⃗) ∈ (Fn
qm)λ × Fλ−1

qm we have

A ⋅ (h, β⃗) = B ⋅ (h, β⃗)

2 Attacks on the system

2.1 A distinguishing attack in the general case

If n, k, λ satisfy k >
(λ−1)n

λ
+ 1, then one can distinguish the public-code from a

random code in polynomial time by the following theorem.

Theorem 1 ([6], [7]). dimFqm
(C⊥

pub + C⊥
pub

[1]
+ ⋅ ⋅ ⋅ + C⊥

pub
[λ]) ≤ λ(n − k) + λ

Now the distinguishing attack comes from this proposition

Proposition 2 ([6] Proposition 2). If Crand is a random code of length n
and dimension n− k, then for a non-negative integer a and a positive λ < n− k,
we have

P (dimFqm
(Crand + C[1]

rand + ⋅ ⋅ ⋅ + C[λ]
rand) ≤ min(n, (λ + 1)(n − k)) − a) = O(q−ma).

3

Now whenever k >
(λ−1)n

λ
+ 1, the dimension of Crand + C[1]

rand + ⋅ ⋅ ⋅ + C[λ]
rand is

very probably equal to (λ+ 1)(n− k) whereas the dimension of C⊥
pub + C⊥

pub
[1]

+

⋅ ⋅ ⋅ + C⊥
pub

[λ]
is probably equal to λ(n − k + 1), which is strictly less than (λ +

1)(n − k).

2.2 Reconstructing attack

We suppose that the public code has rate larger than (λ − 1)/λ, so that the
distinguisher introduced in Section 2.1 works on it. Although the attack we
describe should work heuristically, to have rigorous proofs of work we need the
following assumptions, which are not very constraining

(1) There exists an element (h, β⃗) ∈ S such that ∀i1, . . . , iλ ∈ {1, . . . , n−k− 1}
distinct.

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 β
[i1]
1 β

[i1]
2 . . . β

[i1]
λ−1

1 β
[i2]
1 β

[i2]
2 . . . β

[i2]
λ−1

⋮ ⋮ ⋮ ⋱ ⋮

1 β
[iλ]
1 β

[iλ]
2 . . . β

[iλ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≠ 0,

(2) dimFqm
C⊥
pub + C⊥

pub
[1]

+ C⊥
pub

[2]
+ ⋅ ⋅ ⋅ + C⊥

pub
[λ]

= λ(n − k) + λ

(3) There is no A ∈ GLλ(Fq) such that

βj =

a0,j +
λ−1

∑
i=1

ai,jβi

a0,0 +
λ−1

∑
i=1

ai,0βi

, j = 1, . . . , λ − 1

The main idea of this reconstructing attack is as follows:

Step 1. From C⊥
pub = ⟨h[i]

0 +
λ−1

∑
j=1

βjh
[i]
j , i = 0, . . . , n − k − 1⟩, find one dimensional

vector-spaces Ai for i = 1, . . . , n − k − 1, such that any element (h, β⃗) ∈ S
satisfies:

Ai = ⟨h0 +
λ−1

∑
j=1

β
[−i]
j hj⟩

Step 2. From the linear relation between Ai, i = 0, . . . , n − k − 1, create the system
of λ−1 polynomial equations Ps(X) such that Ps(β⃗) = 0. Afterwards, solve
this system to find one root β⃗ ′.

Step 3. Recover h
′ corresponding to β⃗ ′ such that (h′

, β⃗ ′) ∈ S the set of solution of
(1)

4

First step: Recovering one-dimensional vector spaces We now suppose
that the three assumptions in section 2.2 are true we have the following theorem:

Theorem 2.
Let d ∶= n−k−λ+1. Under the assumptions (1), (2), (3), the algorithm (1)

returns the 1 dimensional vector spaces

Ai = ⟨h0 +
λ−1

∑
j=1

β
[−i]
j hj⟩ , i = 0, . . . , n − k − 1

∀ (h, β⃗) ∈ S.

Algorithm 1: Recovering 1-dimensional vector spaces
Input: C⊥

pub, λ ≤ (n − k)/2
Output: Ai for i = 0, . . . , n − k − 1

1 S0 ← C⊥
pub

[0]
+ C⊥

pub
[1]

+⋯+ C⊥
pub

[λ−1]

2 A ← (
d

⋂
i=0

S[i]
0)

[−(n−k−λ+1)]

3 Dλ−1 ← A ∩ C⊥
pub

[2λ−2−(n−k)]
and B0 ← A +D[1−λ]

λ−1

4 D0 ← B0 ∩ C⊥
pub

[−1]

5 for ℓ ∈ 1, . . . , λ − 2 do

6 Bℓ ← A +
ℓ−1

∑
j=0

D[ℓ−j]
j ;

7 Dℓ ← Bℓ ∩ C⊥
pub

[−1]

8 H ←
λ−1

∑
j=0

C[2−j−λ]
j

9 for i ∈ 0, . . . , n − k − 1 do

10 Return Ai ← H ∩ C⊥
pub

[−i]

Second step: Recovering the vector space
From step 1, we recovered the 1-dimensional vector-spaces

∀i = 0, . . . , n − k − 1, Ai = ⟨h0 +
λ−1

∑
j=1

β
[−i]
j hj⟩

The vector spaces Ai do not depend on (h, β) ∈ S. We introduce the following
lemma.

5

Lemma 2. For any u0 ∈ A0, and for any set I = {i1, . . . , iλ} ⊂ {1, . . . , n−k−1}
of λ distinct elements, there exists a unique λ-tuple u

I def
= (uI

i1 ,u
I
i2 , . . . ,u

I
iλ) ∈

λ

⨉
j=1

Aij such that ∑
ij∈I

u
I
ij = u0

A vector u0 ∈ A0 can be written under the form u0 = αh,β(h0+∑λ
j=1 βjhj).

From the structure of the solution space S, there exists an (h, β) ∈ S such that
αh,β = 1. It means that we can fix u0 ∶= h0 +∑λ

j=1 βjhj as a known vector. Let

Mat
I(X⃗) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 X
[i1]
1 X

[i1]
2 ⋯ X

[i1]
λ−1

1 X
[i2]
1 X

[i2]
2 ⋯ X

[i2]
λ−1

⋮ ⋮ ⋮ ⋱ ⋮

1 X
[iλ]
1 X

[iλ]
2 ⋯ X

[iλ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where X⃗ = (X1, X2, . . . , Xλ−1) is formed with the unknowns. For any I =

{i1, . . . , iλ}, we denote u
I
iℓ = k

I
iℓ (h0 +

λ−1

∑
j=1

β
[−iℓ]
j hj). Since hi are linearly inde-

pendent over Fqm and from Lemma 2 we have the following system of equations:

(kIi1 , k
I
i2 , . . . , k

I
iλ)Mat

I(β⃗) = (1, β1, β2, . . . , βλ−1)

in the unknowns kIi and βi. From assumption (1), det(Mat
I(X⃗)) ≠ 0, knowing

the βi’s, the solution in k
I
i is unique. We define the multivariate polynomial

f
I(X⃗) def

= det(Mat
I(X⃗))

By Cramer’s rule, for any j = 1, . . . , λ we have

k
I
ij =

f
−(I\{ij})∪{0}(β⃗)

f−I(β⃗)
, (2)

where β⃗ = (β1, . . . , βλ).
Let us define Js = ({1, . . . , λ+ 1}) \ {s+ 1}, for all s = 1, . . . , λ. From (2), we

have

∀s ∈ {1, . . . , λ}, k
Js

1 =
f
−(Js\{1})∪{0}(β⃗)

f−Js(β⃗)

Now since we know only the vector space A1 and not the exact vectors

h0 +
λ−1

∑
j=1

β
[−1]
j hj , we do not know k

Js

1 . However, we can compute the quantity

k
Jλ

1 /kJs

1 for s ∈ {1, . . . , λ − 1} thank to algorithm 2 and Lemma 2.

6

Algorithm 2: Determining quotient k
Jλ

1 /kJs

1

Input: {Ai}n−k−1i=1 , {Js}λs=1 and the vector u0 ∈ A0

Output: αs = k
Jλ

1 /kJs

1 for s ∈ {1, . . . , λ − 1}
1 For i = 1, . . . , n − k − 1, fix ui arbitrarily in Ai

2 For s = 1, . . . , λ, find a
Js

j ∈ Fqm such that of ∑
j∈Js

a
Js

j uj = u0

3 Return
a
Jλ

1

a
Js

1

, for s = 1, . . . , λ − 1

Now let us define by αs = (kJλ

1 /kJs

1)[λ+1], for s = 1, . . . , λ − 1. To simplify
notations, we also define

∀s ∈ {1, . . . , λ} {Ls = (λ + 1) − (Js \ {1} ∪ {0})
Ms = (λ + 1) − Js

We obtain the set of equations

∀s ∈ {1, . . . , λ − 1}, f
Lλ(β⃗)fMs(β⃗) − αsf

Mλ(β⃗)fLs(β⃗) = 0

Let

Fs(X⃗) def
= f

Lλ(X⃗)fMs(X⃗) − αsf
Mλ(X⃗)fLs(X⃗) ∈ Fqm[X⃗].

The polynomial Fs has degree q
λ+1 + q

λ + 2
λ−1

∑
j=1

q
j + 1 − q

λ−s

This gives us a multivariate polynomial system over Fqm for which β⃗ is a
solution. However, from our hypotheses we can do better and even reduce the
degrees of the polynomials. Since β1, . . . , βλ are linearly independent they cannot
be roots of linear factors over Fq of Fs. Therefore we can reduce for all s the
polynomial Fs(X⃗) by its Fq-linear factors.

Lemma 3. Let us define

f0(X⃗) = ∏
a∈Fq

(X1 + a)
λ−1

∏
i=2

⎛
⎜
⎝

∏
a0,...ai−1∈Fq

(Xi +
i−1

∑
j=1

ajXj + a0)
⎞
⎟
⎠

For any set I = {i1, . . . , iλ} of λ distinct elements and i1 = min(I), fI(X⃗)
is divisible by (f0(X⃗))[i1]. By the construction of Ls,Ms, we have f

Lλ(X⃗) and

f
Mλ(X⃗) is divisible by (f0(X⃗))q, for all s ∈ {1, . . . , λ−1}, fLs(X⃗) and f

Ms(X⃗)
is divisible by f0(X⃗). This gives us a new polynomial system for which β⃗ is also
a solution, but the degree is reduced.

Ps(X⃗) = Fs(X⃗)
(f0(X⃗))q+1

7

Lemma 4. Let A = (ai,j)λ−1,λ−1i=0,j=0 ∈ PGL(λ;Fq). Consider the transformation
on f

I(X⃗) defined on X⃗ = (X1, . . . , Xλ−1) by

∀j ∈ {1, . . . , λ − 1}, Xj ⟼

a0,j +
λ−1

∑
i=1

ai,jXi

a0,0 +
λ−1

∑
i=1

ai,0Xi

We denote D = a0,0 +
λ−1

∑
i=1

ai,0Xi then the polynomial fI(X⃗) is transformed into

f
I(X⃗) ⟼ A.f

I(X⃗) def
=

∆A

Ddeg(fI) f
I(X⃗)

where ∆A is the determinant of A. As a consequence,

Ps(X⃗) ↦ 1

Dqλ+1−qλ−s Ps(X⃗)

We therefore have

Proposition 3. If there isn’t any common factor between the polynomials
Ps(X⃗), then for any (h, β⃗) ∈ S, the vector β⃗ = (β1, . . . , βλ−1) is a solution
to the polynomial system

∀s = 1, . . . , λ − 1, Ps(X⃗) = 0 (3)

Proof. If there isn’t any common factor between the polynomials Ps(X⃗) then
the number of roots is at most the product of the total degree of polynomials

Ps(X⃗), which is
λ−1

∏
j=1

(qλ+1 − q
j) = ∣PGL(λ,Fq)∣ (Bézout bound).

Any element in the orbit of a solution β⃗ under the group action of PGL(λ,Fq)
is again root of the system. From Assumption (3) the orbit of β⃗ under
PGL(λ,Fq) has cardinality = ∣PGL(λ,Fq)∣ which means that the stabiliser
of β⃗ with respect to this group action is trivial. In that case any root of the
system (3) corresponds to an element of S.

Final step: We point out the key steps in the Coggia-Couvreur attack for
λ as follows. To be convenient, we denote known elements by blue color and
unknown elements by red color. Now from a solution β⃗ ′

= β
′
1, . . . , β

′
λ−1 to (3), we

aim at finding the corresponding vector h⃗′
= h

′
0, . . . ,h

′
λ−1 ∈ (Fn

qm)λ such that
(h⃗′, β⃗ ′) ∈ S.

1. For I = {1, . . . , λ}, since β⃗ ′ is known, ki =
f
−(I\{i})∪{0}(β⃗ ′)

f−I(β⃗ ′)
, i = 1, . . . , λ can

be computed. Moreover, from the Lemma 2, there exists a unique λ-tuple

uI = (u1, . . . ,uλ) ∈
λ

⨉
i=1

Ai such that ∑λ
i=1 ui = u0, so we can compute

8

h
′
0 +

λ−1

∑
j=1

β
′
j
[−i]

h
′
j =

ui

ki
, i = 1, . . . , λ. Thus,

(h′
0, . . . ,h

′
λ−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

β
[−1]
1 β

[−2]
1 . . . β

[−λ]
1

⋮ ⋮ ⋱ ⋮

β
[−1]
λ−1 β

[−2]
λ−1 . . . β

[−λ]
λ−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (u1

k1
,
u2

k2
, . . . ,

uλ

kλ
)

It implies to a linear system of λ equation and λ unknowns which are vectors
h
′
0, . . . ,h

′
λ−1 and the determinant of the matrix of coefficients is non-zero.

2. After recovering an alternate key of the form (h′
0, . . . ,h

′
λ−1, β

′
1, . . . , β

′
λ−1),

we can compute the dual code C⊥
pub and hence decrypt the ciphertext.

2.3 Complexity of reconstructing attack

This part shows the complexity of the attack by giving the number of operation
in Fqm . Let ω be the exponent of the complexity of linear algebra operations.
The Frobenius map costs O(log q) operations.

Step 1.
– Computation of dual code C⊥

pub costs O(nω) operations.

– Computation of C⊥
pub

[i]
,∀i = 1, . . . , n − k + 1 costs O(n3

log q) operations.

– Computation Sj =

j+λ−1

∑
i=j

C⊥
pub

[i]
uses Gaussian elimination, so it costs O(nω).

Thus, computation ⋂n−k−λ+1
i=0 Sj costs O(nω+1).

Step 2.
– Computation (uI

1 , . . . , u
I
λ) represents the resolution of a linear system λ un-

knowns and n equations, which can be can done by computing QR decom-
position. This computation costs 2nλ2−2/3λ3 operations (Section 5.3.3 [8]).
This computation should be performed O(n) times, so it costs O(n2) oper-
ations.

– Complexity of finding a root of a system of polynomial equations
• In case λ = 3, it includes the complexity of finding a root of a polynomial

of degree d by Cantor–Zassenhaus algorithm [9] which costs Õ(d2m log q)
operations in Fqm and the computation of resultant of bivariate polyno-
mials which can be done in (d3−1/ω)1+o(1) [10] for d = (q4 − q)(q4 − q

2)
the number of roots.

• Since the number of roots of the system (3) reaches the Bézout’s bound,

the complexity of solving this system is polynomial in d =

λ−1

∏
j=1

(qλ+1− q
j)

the number of solutions ([11], [12], [13], [14]).
Step 3. A finite number of linear systems solving costs O(nω).
Summary. For m = O(n), overall cost of the attack is O(n3

log q + n
ω+1)+

d
O(1) for d =

λ−1

∏
j=1

(qλ+1 − q
j) the number of solutions.

9

Conclusion We generalised the Coggia and Couvreur attack [6] for Loidreau’s
cryptosystem [5] for any λ and analysed its complexity.

The parameters of (k, n), which Rpub ≥ 1 − 1/λ should be avoided in
Loidreau’s scheme. In the future, it will be worthwhile to attempt a modification
of the attack to work for lower rate codes Rpub < 1 − 1/λ as well.

References

1. R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding Theory,”
Deep Space Network Progress Report, vol. 44, pp. 114–116, Jan. 1978.

2. E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a non-
commutative ring and their application in cryptology,” in Advances in Cryptol-
ogy — EUROCRYPT ’91 (D. W. Davies, ed.), (Berlin, Heidelberg), pp. 482–489,
Springer Berlin Heidelberg, 1991.

3. P. Gaborit, G. Murat, O. Ruatta, and G. Zemor, “Low Rank Parity Check codes
and their application to cryptography,” in The International Workshop on Coding
and Cryptography (WCC 13) (L. Budaghyan, T. Helleseth, and M. G. Parker, eds.),
(Bergen, Norway), p. 13 p., Apr 2013. ISBN 978-82-308-2269-2.

4. R. Overbeck, “Structural attacks for public key cryptosystems based on gabidulin
codes,” J. Cryptology, vol. 21, pp. 280–301, 2008.

5. P. Loidreau, “A new rank metric codes based encryption scheme,” in PQCrypto
2017 (T. Lange and T. Takagi, eds.), vol. 10346 of Lecture Notes in Computer
Science, (Utrecht, Netherlands), pp. 3–17, Springer, June 2017.

6. D. Coggia and A. Couvreur, “On the security of a Loidreau’s rank metric code
based encryption scheme,” in WCC 2019 - Workshop on Coding Theory and Cryp-
tography, (Saint Jacut de la mer, France), Mar. 2019.

7. A. Ghatak, “Extending coggia-couvreur attack on loidreau’s rank-metric cryptosys-
tem,” Designs, Codes and Cryptography, vol. 90, pp. 215–238, 2022.

8. G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2013.
9. A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and É. Schost,

Algorithmes Efficaces en Calcul Formel. Palaiseau: Frédéric Chyzak (auto-édit.),
Sept. 2017. 686 pages. Imprimé par CreateSpace. Aussi disponible en version
électronique.

10. G. Villard, “On computing the resultant of generic bivariate polynomials,” in Pro-
ceedings of the 2018 acm international symposium on symbolic and algebraic com-
putation, pp. 391–398, 2018.

11. Y. N. Lakshman and D. Lazard, “On the complexity of zero-dimensional algebraic
systems,” in Effective methods in algebraic geometry, pp. 217–225, Springer, 1991.

12. J.-C. Faugere, P. Gianni, D. Lazard, and T. Mora, “Efficient computation of zero-
dimensional gröbner bases by change of ordering,” Journal of Symbolic Computa-
tion, vol. 16, no. 4, pp. 329–344, 1993.

13. J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault, “Sub-cubic change of ordering
for gröbner basis: a probabilistic approach,” in Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation, pp. 170–177, 2014.

14. J. van der Hoeven and G. Lecerf, “On the complexity exponent of polynomial
system solving,” Foundations of Computational Mathematics, vol. 21, no. 1, pp. 1–
57, 2021.

10

