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Abstract. In this paper, we explore the tools from cryptology and com-
plexity theory in the domain of Boolean functions with low polynomial
degree and high sensitivity. It is well known that the polynomial degree
of a Boolean function and its resiliency are directly connected. Using
this connection we analyze the polynomial degree vs sensitivity values
through the lens of resiliency, demonstrating certain existence and non-
existence results on small number of variables (upto 10). In this process,
borrowing an idea from complexity theory, we show that one can im-
plement resilient Boolean functions on a large number of variables with
linear size and logarithmic depth. Finally, we extend the notion of sen-
sitivity to higher order and present relevant results in that direction.

Keywords: Boolean Function, Polynomial Degree, Resiliency, Sensitiv-
ity, Separation.

1 Introduction

Real polynomial degree (pdeg(f)) and sensitivity (s(f)) are two central proper-
ties of Boolean functions in complexity theory, and have been studied extensively
over the past three decades. These notions have important implications in the
domain of query complexity [2] (and not only), where finding functions with
lower polynomial degree than sensitivity generates more candidates for obtain-
ing super-linear separation between two of the query complexity models, the
classical deterministic and exact quantum models. A detailed study of these
properties and the relations can be found in [2].

Determining the maximum possible separation between sensitivity and poly-
nomial degree is an open problem that has been studied widely. Implicitly, the
problem reduces to finding the separation between the number of variables and



the real polynomial degree in a fully sensitive function (a function f on n vari-
ables with s(f) = n). Informally, the sufficient and necessary condition for ob-
taining full sensitivity in a function f on n variables is to have an input point
x ∈ {0, 1}n such that f(x) = f(xi), 1 ≤ i ≤ n, where xi is obtained by altering
the value of the i-th bit of x. Thus, we fix the output corresponding to some n+1
input points, of the total 2n input points. Interestingly, this greatly restricts the
real polynomial degree of the function. Without any restriction, a function that
depends on all of its variables can have pdeg(f) as low as O(log n). However,
one of the seminal papers [7] in the study of Boolean functions dictates that

pdeg(f) = Ω
(
s(f)

1
2

)
. Furthermore, apart from the famous recursive amplifi-

cation method (which is also known as the function composition), there does
not exist any known method to obtain functions with non-constant separation
between s(f) and pdeg(f). In fact, the maximum separation known between
s(f) and pdeg(f) is achieved by finding a 6 variable function with s(f) = 6 and
pdeg(f) = 3 (due to Kushilevitz [8]) and then recursively amplifying it. This
results in a function f on n = 6d variables with full sensitivity (n) and polyno-

mial degree of 3d so that s(f) = pdeg(f)
log3 6 ≈ pdeg(f)

1.63
[8]. On the other

hand, the real polynomial degree is intrinsically connected to the cryptographi-
cally important property of resiliency. Specifically if a function f on n variables
has pdeg(f) = m then the function g = f ⊕ Ln is (n −m − 1)-resilient, where
Ln is the all variable (symmetric) linear function. In this paper we refer to g
and f as each other’s dual. In this regard, we define the dual sensitivity (ds(f))
property, where a function g has full dual sensitivity if and only if there exists a
point x ∈ {0, 1}n such that g(x) = g(xi), 1 ≤ i ≤ n. This results in a one-to-one
connection between the pdeg(f) − s(f) relationship and resiliency order-ds(g)
relationship, where g is the dual of f . We should remark here that the resilient
Boolean functions have received a lot of interest in construction of symmetric
ciphers as evident from [5]. Related to algebraic degree, one may note that the
cubic (and quadratic) functions of highest resiliency are fully classified in [3].

In this paper, we show that the techniques from complexity theory and
cryptology can supplement each other with respect to combinatorial aspects
of Boolean functions which are important in their own interests, and extend the
notion of sensitivity to higher order towards a better understanding how fixing of
outputs with respect to flipping of more than one input bits can effect the lower
bound on the polynomial degree of a function. That is, we use different proper-
ties of resiliency and polynomial degree to obtain results and constructions that
apply to both paradigms of cryptology and complexity theory.

1.1 Contributions and Organization

We revisit the one to one connection between “low polynomial degree-high sen-
sitivity” and “high resiliency-dual sensitivity” of Boolean functions, via their
Fourier spectrum based definitions. This connection is exploited in Section 2 to
search for separation between s(f) and pdeg(f) for functions on all small number
of variables through the resiliency approach. We find new classes of functions



with maximum s(f)−pdeg(f) separation and obtain super-linear separation be-
tween n and pdeg(f) for fully second order sensitive functions. Specifically we
find the following which were not known earlier.

– There exists second order six variable functions with pdeg(f) = 3. That is
the maximum known separation for n and pdeg is same for first and second
order sensitivity.

– There does not exist any 7 variable fully sensitive function with pdeg(f) = 3.

Further, we analyze the recursive amplification method explained in [7] (see also
further explanation in the proof of [8, Lemma 1]). We show that its generalization
allows us to obtain additional classes of functions with super-linear separation
between s(f) and pdeg(f). Next, using this method we design efficient circuits
(linear size and logarithmic depth (in n) for highly resilient functions. In the
working full version [6] (this includes elaborate discussion about the motivation
and background), we discuss the cryptographic properties of these functions,
such as nonlinearity and will describe different trade-offs.

We use our resiliency based search method to obtain second order sensitive
6 variable functions with pdeg(f) = 3. Coupled with the modified recursive
amplification that we propose in Section 3, this gives us second order functions

fu with n = 6u variables and pdeg(fu) = n
log 3
log 6 , matching the best known

bound between n and pdeg(f) for first order sensitivity. This raises the question
of whether asymptotic separation between n and pdeg(f) is a strictly decreasing
function when plotted against sensitivity order.

1.2 Preliminaries

The definitions of resiliency and polynomial degree are based on the Fourier
spectrum of a Boolean function [9]. A function f has polynomial degree k if and
only if its Fourier spectrum values Wf (x) are 0 for all x ∈ {0, 1}n with Hamming
weight wt of x being greater than k. Recall that the Fourier transform of a

function f : Fn
2 → F2 at the point u is Wf (u) =

∑
x∈Fn

2

(−1)f(x)+u·x. A function f

is k-resilient if and only if its Fourier spectrum values are 0 for all x : wt(x) ≤ k.
Generally, we will interpret a function to be k-resilient here when it is k-resilient
but not (k + 1)-resilient. Given a function f , Wf (x) = Wf⊕Ln

(x̄) where Ln

is the linear function on n variables with x̄ obtained by flipping each bit of
x̂ ∈ Fn

2 . These structural arguments gave rise to the famous result connecting
the resiliency order and polynomial degree of Boolean functions.

Theorem 1 ([9], page 150). If a function g is k-th order resilient then the
function f = g ⊕ Ln will have a polynomial degree equal to n − k − 1, where
Ln = ⊕n

i=1xi.

1.3 Sensitivity

Sensitivity s(f) is one of the most studied properties of Boolean function. For
any x ∈ Fn

2 , we let xi to be x with the i-th bit of x flipped (complemented).



The sensitivity of a Boolean function f : Fn
2 → F2 at a point x can be de-

fined as s(f,x) = |i ∈ [n] : f(x) 6= f(xi)|, and the sensitivity of a function is
s(f) = maxx∈Fn

2
s(f,x). It is natural to consider the situation where we want

the function to have the same value even if multiple input bits of x are flipped
regardless of their position. In this direction, we define the k-th order sensitivity
of a Boolean function.

For any set S ⊆ [n] and the input point x ∈ Fn
2 we define x(S) as the input

point obtained by flipping the j-th bit of x for all j ∈ S. Sensitivity is defined
around the notion of flipping any single component corresponding to a given
input where the output of the function remains unchanged. In this regard we
define k-th order sensitivity of a function in the following manner.

Definition 1. We call a function f : Fn
2 → F2, fully k-th order sensitive if there

exists x ∈ Fn
2 such that f(x) 6= f

(
x(S)

)
, ∀S ⊆ [n], 1 ≤ |S| ≤ k.

That is, f is fully (we may omit ‘fully’ in the following text) k-th order
sensitive if there exists an input so that flipping any i ≤ k of the component
bits of the input, changes the function’s output. Thus a first order sensitive
function is simply a function with s(f) = n. The main implication of k-th order
sensitivity is that, it indeed further restricts how low the degree of the real
polynomial corresponding to the function can be. Without any restrictions we
know pdeg(f) can be as low as log n for functions that depend on n variables [4].
If one fixes s(f) = n then the polynomial degree is Ω (

√
n) [7]. In this paper

we introduce the concept of higher order sensitivity and find certain results of
separation in that direction.

1.4 Dual sensitivity

Given a function f on n variables with polynomial degree m, we call the function
g = f ⊕ Ln, the dual of f , which has n−m− 1 resiliency. The dual sensitivity
of a function f : Fn

2 → F2 at a point x is defined as ds(f,x) = |{i ∈ [n] : f(x) =
f(xi)}|. The dual sensitivity of f is ds(f) = maxx∈Fn

2
ds(f,x). This notion can

be extended to k-th order dual sensitivity in the following manner.

Definition 2. We say a function f is k-th order dual sensitive if there exists
x ∈ Fn

2 , such that, for all j : 1 ≤ j ≤ k we have:

– if j ≡ 0 mod 2, then f(x) 6= f
(
x(S)

)
, ∀S ⊆ [n] with |S| = j.

– if j ≡ 1 mod 2, then f(x) = f
(
x(S)

)
, ∀S ⊆ [n] with |S| = j.

That is, a function is k-th order dual sensitive if there is an input point such
that if we flip the values of any odd number ≤ k of input bits then the function’s
output remains unchanged and if we flip any even number ≤ k of input bits then
the function’s output gets complemented.

Proposition 1. A function f on n variables is k-th order sensitive if and only
if its dual g = f ⊕ Ln is k-th order dual sensitive.



Let us now present the following notations and a corresponding technical result.

– An (n, k, p)-function is a Boolean function of n variables that is k-th order
sensitive and has real polynomial degree at most p.

– An [n, k,m]-function is a Boolean function of n variables that is k-th order
dual sensitive and m-resilient.

Proposition 2. The n-variable function f is an (n, k, p)-function if and only if
g = f ⊕ Ln is an [n, k, n− p− 1]-function.

Now we move into the search based results.

2 Search on small number of variables

As we shall observe in Section 3, upon some modifications, the recursive ampli-
fication method can be used to obtain k-th order sensitive functions fu on du

variables with polynomial degree of pu, starting from a function f on d variables
and pdeg(f) = p. Here f is called the base function. Thus results of low pdeg of
k-th order sensitive functions on small variables directly generate super-linear
separations between n and pdeg for k-th order sensitive functions.

For example, if we obtain a fully sensitive (first oder sensitive) function on
7 variables with pdeg(f) = 3, or a 10 variable first order sensitive function with
polynomial degree 4, then it would improve upon the best known separation
between s(f) and pdeg(f). In this direction, the functions on up to 5 variables
can be exhaustively searched to obtain all existing combinations. However, for
functions on 6 and more variables, an exhaustive search is not possible given the
size of search space (264 for n = 6, 2128 for n = 7 and so on), and we instead
use the properties of resiliency and dual sensitivity to completely exhaust the
case of fully sensitive functions for n = 6 and n = 7 in terms of obtaining all
functions and proving non existence, respectively.

Detailed results for 4 and 5 variables are available in [6]. Let us now look into
the case of 6 variable functions, for which we have the best base function for first
order sensitivity, the Kushilevitz functions [8, Footnote on p. 560]. The impor-
tance of such 6-variable functions from complexity theoretic views are explained
in [4], too.

There are total 264 Boolean functions on 6 variables, and checking the re-
siliency and sensitivity of all possible functions requires computational resources
that is unattainable. We instead use properties of dual sensitivity and resiliency
to obtain all possible [6, 1, 2]-functions by concatenating the truth tables of two
5 variable functions. Any 6 variable function f can be written as f(x1, . . . , x6) =
(1 ⊕ x6)f2(x1, . . . , x5) ⊕ x6f2(x1, . . . , x5) Where f1 and f2 are functions on 5
variables. Then we have the following constraints on the properties of f .

1. If f is 2-resilient then either both f1 and f2 are 1-resilient or both are 2-
resilient [5].



2. If f is fully dual sensitive, then at least one of f1 and f2 are fully dual
sensitive. This is easy to see as if neither f1 nor f2 are dual sensitive then
there is no input point for which the whole function can have full dual
sensitivity.

Now we have approximately 213 many [5, 1, 1]-functions and approximately
218 many [5, 0, 1]-functions, which reduces the effective search space to approxi-
mately 233 from the naive 264. Using these constraints we get the full character-
ization of [6,−, 2]-functions, which was not previously reported.

– We find that there are 33632(≈ 215.03) many [6, 1, 2]-functions. Here it should
be noted that the dual of any such function is a (6, 1, 3)-function. We can
use the modified recursive amplification technique of Theorem 2 on all such
functions to obtain (6u, 1, 3u)-functions, which gives us the best known sep-
aration between sensitivity and polynomial degree, same as the function by
Kushilevitz [8].

– We also get 192(≈ 27.6) many [6, 2, 2]-functions, and this, via Theorem 2 of
Section 3, gives us the maximum super-linear separation between number
of variables and real polynomial degree in second order sensitive functions,

which is pdeg(f) = n
log 3
log 6 , which is also the currently best known separation

for first order sensitivity.
Furthermore, there is no [6, > 2, 2]-function.

2.1 Nonexistence of (7, 1, 3)-functions

The existence or non-existence of a (7, 1, 3)-function is central to understand-
ing the maximum separation between s(f) and pdeg(f). If there does exist a
(7, 1, 3)-function then we can obtain a (7u, 1, 3u)-function using the recursive

amplification method, which gives s(f) = pdeg(f)
log 7
log 3 , improving on the best

known result. However, the total number of functions on 7 variables is 2128 and
therefore checking all functions for this profile is not possible. In this direction
we use a mixed integer linear program to investigate the existence of such a
function. Let f be a Boolean function on 7 variables. Then, f has full sensitiv-
ity and polynomial degree 3 if and only if there is a vector x ∈ F7

2 such that
f(x)⊕ (xi) = 1 for every 1 ≤ i ≤ 7 and Wf (u) = 0 for every u ∈ F7

2 with Ham-
ming weight no less than 4. For every x ∈ F7

2, by mixed integer linear program
method with constraints on the Walsh spectrum, the GUROBI software shows
that there is no 7 variable function with full sensitivity and polynomial degree 3.
Ranging over all vectors x in F7

2, we confirm that there is no such function.
However, it not possible to search for all fully sensitive and higher order

sensitive functions on more than 7 variables because of the size of the search
space. In this regard we search for 8, 9 and 10 variables rotation symmetric
Boolean functions (RSBFs), which is another cryptographically important class
of functions, to obtain fully sensitive (first order sensitive functions) using the
least possible polynomial degree (maximum resiliency in the dual function). The
detailed results are available in [6].



Particularly, we check that there does not exist any [10, 1, 5]-rotation sym-
metric function. It should be noted that if we can obtain a [10, 1, 5]-function
(provided such a function exists) then that would improve on the best known
separation between sensitivity and polynomial degree. This is because we can
then get a (10, 1, 4)-function and then recursively amplify the function using the
amplification process described in Theorem 2 to get a (10u, 1, 4u)-function, thus

giving s(f) = (pdeg(f))
log 10
log 4 ≈ (pdeg(f))

1.66
and this would be an improvement

on the best known result s(f) = (pdeg(f))
log 6
log 3 ≈ (pdeg(f))

1.63
starting from

6-variable Kushilevitz functions [8, Footnote on p. 560]. A search on 10-variable
functions outside the RSBF class is quite challenging in terms of computational
efforts.

3 The recursive amplification method

We have noted that fixing the value of a function corresponding to n+ 1 input
points to make a function fully sensitive, will restrict the polynomial degree to
Ω(
√
n). The best known results in this paradigm is derived through the recursive

amplification method, which is also the function composition method. This is a
well known technique [7] that is used to obtain super-linear separation between n
and pdeg(f) and is also used to obtain super-linear separation between s(f) and
pdeg(f). In this section we use this technique and obtain the following results:

1. A slight modification of the recursive amplification method to obtain super-
linear separation between s(f) and pdeg(f) by starting from any candidate
base function.

2. We build highly resilient functions with good nonlinearity, O(n) circuit size
and O(log n) circuit depth.

3. We obtain super-linear separation between number of variables(n) and poly-
nomial degree (pdeg(f)) for functions with constant order sensitivity.

Recursive amplification was used to obtain the largest known separation be-
tween sensitivity and polynomial degree of Boolean functions [2,7,8], as well as
the first example of separation between exact quantum query complexity and
deterministic query complexity [1], among other separation results.

The basic construction of [7] is as follows. Let f be a function on d variables
x1, x2, . . . , xd with polynomial degree p. Then the recursive amplification method
generates the function fu on du variables as: f1 = f , and

f i+1 (x1, . . . , xdi+1) = f
(
f i (x1, . . . , xdi) , . . . , f i

(
x(d−1)di+1, . . . , xdi+1

))
. (1)

One may note that for any starting f , we have pdeg(fu) = pu. Thus if the
sensitivity also gets amplified, we could start with any d variable function with
and obtain fu with super-linear s(fu) − pdeg(fu) whenever s(f) > pdeg(f).
However, sensitivity is not always amplified in the similar manner, and s(fu)
can be arbitrarily low. To this end, we propose a construction so that we can
get super-linear separation between s() and pdeg() starting from any function.



Furthermore, the results also follow for higher-order sensitivity. Our construc-
tion and its proof are presented below. One may note the generalization of our
technique over the existing idea in [7], as explained above in (1).

Theorem 2. Let f be a d-variable k-th order sensitive function with pdeg(f1) =
p and y = (y1, y2, . . . , yd) being one input with respect to which the function
exhibits k-th order sensitivity. We define the function fu on du variables such
that:

1. y1 = y, and yi ∈ Fdi

2 is obtained by concatenating d copies of yi−1;
2. f1 = f , and µi−1 = f i−1(yi−1);

3. f i = f
(
f i−1(x1, . . . , xdi−1)⊕ µi−1 ⊕ y1, . . . , f i−1(xjdi−1+1, . . . , x(j+1)di−1)⊕

µi−1 ⊕ yj , . . . , f i−1(x(d−1)di−1+1, . . . , xdi)⊕ µi−1 ⊕ yd
)
.

Then fu is a k-th order sensitive function on n = du variables and pdeg(f) = pu

with k-th order sensitivity achieved at the input point yu.

Proof. Here, we have the base function f on d variables. Let us denote by [x]k
any input point that can be obtained by flipping at least one and at most k
bits of x ∈ Fn

2 . Thus if a function f is k-th order sensitive at the point y then
f([y]k) = f(y) by definition. We now prove the result using induction on u. The
result holds for u = 1 by definition. Assume the result holds for u−1 and we need
to show that the function fu has k-th order sensitivity at yu. The value of the

function at yu is fu(yu) = f
(
fu−1(yu−1)⊕ fu−1(yu−1)⊕ y1, . . . , fu−1(yu−1)⊕

fu−1(yu−1)⊕ yd
)

= f(y).

Let us now select any i ≤ k variables whose value we wish to flip resulting in
an input point of the form [yu]k. We define the d tuple S = (s1, s2, . . . , sd) where
si denotes the number of bits to be flipped between x(i−1)du−1+1 and xidu−1 . Thus
0 ≤ si ≤ k, ∀i. If si = 0 then fu−1(xidu−1+1, . . . , x(i+1)du−1)⊕fu−1(yu−1)⊕ai =
fu−1(yu−1)⊕ fu−1(yu−1)⊕ ai = ai.

If 1 ≤ si ≤ k then fu−1(xidu−1+1, . . . , x(i+1)du−1) ⊕ fu−1(yu−1) ⊕ ai =
fu−1([yu−1]k)⊕ fu−1(yu−1)⊕ ai = ai.

The number of nonzero values in S are at most k, which would change at
most k of the d points yi in the base function’s input to yi and result in an
input to f of the form of f([y]k). Thus for the function fu we have fu([yu]k) =
f([y]k) = f(y) = fu(yu).

The polynomial degree result holds from the basic definition of recursive
amplification as pdeg(f) = pdeg(f) and this completes the proof. ut

As an example of Theorem 2, Figure 1 provides an outline of building a 9-
variable function using 4 instances of the circuit Cf corresponding to a 3-variable
function f .

Theorem 3. Given a function f on d variables with pdeg(f) = p < d we can

obtain a function on gu on n = du variables with resiliency n − n
log p
log d − 1 such

that there is a circuit of linear size and logarithmic depth in n considering f can
be implemented with constant resources.



Proof. Following Theorem 2, we denote by fu the function obtained through
recursively amplifying the function f , u times, which gives us a function on du

variables with pdeg(fu) = n
log p
log d . Let us assume the circuit corresponding to the

base function on d variables consists of some cd gates and has a depth of td. This
circuit takes in d input variable bits and outputs a single bit. Then the circuit
corresponding to fu can be built using the circuits for f in a layered manner in
the following way:

– In the first layer there are total du−1 circuits each taking in d variables each
as input bits.

– In the i-th layer there du−i−1 circuits each taking as input d of the du−i

output bits from the previous layer.
– The final layer contains a single circuit, whose output is the output of the

final function.

Then the total number of circuit instances of f to be used is
∑u−1

i=0 d
i = du−1

u−1
and the gate count is cd × du−1

u−1 = O(du) = O(n). Moreover, the depth of this
circuit is u× td as the circuit for f is set up in u layers, which gives as a circuit
for fu with O(logd n) depth.

Now if we XOR the parity of all the input bits to this output we obtain a

n− n
log p
log d − 1 function gu via the resiliency-polynomial degree connection. That

is, gu is the dual of fu where fu is the function on nu variables obtained by
recursively amplifying f . The parity of the input bits can be simply obtained in
parallel using n gates and log n depth, which gives us the result. ut

Fig. 1: Example of a circuit corresponding to recursive amplification.

Building efficient low depth circuits for cryptographically important functions
with large number of input variables is a challenging problem. In this regard
one may refer to an earlier construction in [10]. That work [10] shows how to
start with an m-resilient function on some d variables and generate an (m+ u)-
resilient function on n = (d + u) variables that requires O(u) depth, which is



effectively O(n) as d is constant for any given construction. Improving on this,
we have the result as in Theorem 3. We refer to [6] for elaborate discussion on
the nonlinearity lower bounds one can derive for these highly resilient functions,
along with algebraic degree-resiliency trade-offs.

Finally, we note that one can obtain super-linear separation between n and
pdeg(f) for functions with any constant order sensitivity. The details are avail-
able in [6]. This raises the interesting problem of understanding the nature of
the maximum super-linear separation possible between n and pdeg(f) with in-
creasing, constant order sensitivity k.
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