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Abstract. In this paper we introduce a new family of rank metric codes,
which is essentially a random subcode of elementary linear subspace
(ELS). The proposed codes allow for a polynomial-time probabilistic
decoding algorithm with low failure probability.

1 Introduction

Rank metric codes, introduced independently by Delsarte [3], Gabidulin [4] and
Roth [13], have found important applications in cryptography and network cod-
ing [5,6,11,14]. The application of rank metric codes typically requires efficient
decoding of the codes in use. So far there have been a few families of rank metric
codes that can be efficiently decoded in polynomial time, such as the Gabidulin
codes [4] and the low rank parity-check (LRPC) codes [12]. This paper intro-
duces a new family of random-like rank metric codes, named Hybrid ELS codes,
that are randomly generated and allow for a probabilistic decoding algorithm
with polynomial-time complexity. The decoding algorithm adopts a similar idea
used for the LRPC codes but exhibits better performance in terms of error cor-
rection capability at a given rate. Decoding failure of the proposed codes is also
investigated.

The paper will be structured as follows. In Section 2 we present basic no-
tation and a brief introduction to rank-metric codes. Section 3 briefly recalls
the decoding approach for LRPC codes [12] and some properties of the Elemen-
tary Linear Subspace (ELS) [10], which are relevant to the definition and the
decoding algorithm of the Hybrid ELS codes. In Section 4 we propose the new
family of Hybrid ELS codes, and discuss the upper bound on the rank weights
of codewords in the Hybrid ELS codes and the upper bound on the minimum
rank distance of Hybrid ELS codes. Section 5 presents a probabilistic polynomial
decoding algorithm for Hybrid ELS codes, and also analyzes possible failures in
the two major decoding steps.

2 Preliminaries

Let Fq be the finite field of q elements where q is a prime power. Elements of
a finite field will be denoted by lower case letters. Given a vector v, its i-th
component is denoted by vi. Matrices will be denoted by upper case letters and
the transpose of a matrix M will be indicated by Mᵀ. We denote by Fk×n

q the



set of k×n matrices over Fq. An Fqm-linear subspace of Fn
qm will be denoted by a

calligraphic letter; and an Fq-linear subspace of Fqm will be denoted by a fraktur
letter. The number of possible different bases of a t-dimensional subspace of Fm

q

is given by

Aq(m, t) =

t−1∏
i=0

(qm − qi). (1)

Then the Gaussian binomial is given by

[
m
k

]
q

=
Aq(m,k)
Aq(k,k)

.

Definition 1. For a subset S = {s1, . . . , st} ⊆ Fqm , its support is defined as
the Fq-linear space of Fqm generated by the elements of S, i.e.,

〈S〉Fq
= 〈s1, . . . , st〉Fq

.

Similarly, the support of a vector v = (v1, . . . , vn) ∈ Fn
qm is defined as 〈v〉Fq

=

〈v1, . . . , vn〉Fq
and the support of a matrix H ∈ Fk×n

qm is defined as 〈H〉Fq
=

〈Hi,j〉Fq , namely, the Fq-linear space generated by all the entries of H.

Using the notion of support we can equip Fn
qm with the rank metric.

Definition 2. The rank weight of a vector v ∈ Fn
qm is given by

rw(v) = dim(〈v〉Fq
).

We can define the rank distance between v and w in Fn
qm as

rd(v,w) = rw(v −w) = dim(〈v −w〉Fq ).

A code C ⊆ Fn
qm is said to be a rank-metric code when we consider it as a

subset of Fn
qm equipped with the rank distance. When C is a linear subspace of

Fn
qm , it is called an Fqm-linear rank metric code.

An Fqm-linear code can be also given in terms of a generator matrix or a parity-
check matrix.

Definition 3. Let C ⊆ Fn
qm be an Fqm-linear code of dimension k. Let v1, . . . ,vk

be a group of Fqm-linearly independent vectors in C. A matrix G having vi’s as
its row vectors is a generator matrix of C. Denote by C⊥ the linear space of
dimension n−k of the codewords orthogonal with C, that is C⊥ = {v ∈ Fn

qm |v·c =

0, ∀c ∈ C}. A generator matrix H of C⊥ is a parity-check matrix of C.

From the above definition it’s clear that any element c ∈ C can be uniquely
obtained as c = (x1, . . . , xk)G for some (x1, . . . , xk) ∈ Fk

qm . In addition, given a
parity-check matrix H of a linear code C, for any v ∈ Fn

qm , one has vHᵀ = 0 iff
v ∈ C. Given a vector v ∈ Fn

qm , the syndrome of v is the (n−k)-dimensional vec-
tor given by s = vHᵀ. An important problem in coding theory is the syndrome
decoding problem. In the context of rank metric, we recall the rank syndrome
decoding (RSD) problem below.
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Definition 4 (RSD). Given an (n − k) × n parity-check matrix H over Fqm ,
a syndrome s and a positive integer r, the rank syndrome decoding (RSD)
problem is to find e ∈ Fn

qm such that eHᵀ = s and rw(e) ≤ r.

Recently the complexity of the above RSD problem was comprehensively
investigated in [7]. Later Gaborit and Zémor proved the hardness of the RSD
problem under unfaithful randomized reductions [9]. With the confidence on the
hardness of the problem, several cryptosystems based on rank-metric codes have
been proposed [5,12,8,6,2,11].

3 LRPC codes and Elementary Linear Subspace

3.1 LRPC codes

In 2013 Gaborit, Murat, Ruatta and Zémor introduced the family of LRPC
codes that allows for a probabilistic decoding algorithm with polynomial-time
complexity [12].

Definition 5. Let H be an (n−k)×n parity-check matrix over Fqm . The den-
sity of H is defined as d = dim(〈H〉Fq

). A code C having a parity-check matrix
H of low density d (� m) is called an LRPC code of density d.

The decoding algorithm of LRPC codes [12,2] starts with the observation that,
if an error e of rank r occurs, the components of its syndrome have to lie in a
subspace of dimension at most rd. This subspace is obtained as 〈EH〉Fq

where E =
〈e〉Fq

is the error support, H = 〈H〉Fq
is the support of the parity-check matrix

and EH = {eh| e ∈ E, h ∈ H}. When this product subspace has dimension no
greater than n − k, with a high probability one can treat 〈EH〉Fq as 〈s〉Fq , the
Fq-linear span of the n− k elements given by the syndrome s. With H and 〈s〉Fq

one can recover the error support E = 〈ε1, . . . , εr〉Fq
with a good probability.

Once the error support is obtained, one can represent the error vector as
e = (ε1, . . . , εr)X, where X ∈ Fr×n

q is the matrix obtained from the coordinates
of e with respect to the basis ε1, . . . , εr. In order to recover the nr unknowns
in X, one expands the Fqm-linear syndrome equations s = eHᵀ over Fq. This
expansion gives (n − k)dr equations in nr variables over Fq. To summarize, in
order to recover the error support, one needs d ≤ n−k

r , and in order to have a
uniquely solvable system, one needs d ≥ n

n−k . That is to say, in order to allow
for an efficient probabilistic decoding algorithm, an LRPC code of length n over
Fqm should have its density in the following range:

1 <
n

n− k
≤ d ≤ n− k

r
. (2)

With the random-like behavior and efficient decoding algorithm, LRPC codes
have been applied in several cryptosystems in recent years [12,8,6,11].
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3.2 Elementary Linear Subspace

The family of elementary linear subspaces (ELS) [10] will be an essential building
block for the proposed codes in this paper. Here we recall the definition of ELS
and briefly summarize some of its properties.

Definition 6. [10] A linear subspace of Fn
qm is said to be elementary if it has a

basis B consisting of n-dimensional row vectors over Fq. We denote by Ek(qm, n)
the set of all elementary linear subspaces with dimension k in Fn

qm .

Similarly, we say an [n, k] code C ⊆ Fn
qm is elementary if it can generated by

a k × n matrix G over the base field Fq ⊆ Fqm . That is to say, an [n, k] code in
Fn
qm is elementary if an only if C ∈ Ek(qm, n). The rank weight of an ELS code

is limited by the dimension of the code.

Proposition 1. [10, Prop. 2] For C ∈ Ek(qm, n), all codewords of C have rank
weight upper bounded by k. Moreover if k ≤ m the upper bound is tight.

Note that in ELS codes, a codeword v = mG has rank equal to rw(m) since G
has full rank over Fq. Therefore there are in total Aq(m, r) ∗ Aq(n, r)/Aq(r, r)
codewords of rank r. Recall that LRPC codes are defined in terms of parity-check
matrices with low density. An interesting connection between LRPC codes and
ELS codes is given below.

Proposition 2. An LRPC code of density one is an ELS code. In other words,
C ∈ Ek(qm, n) iff C⊥ ∈ En−k(qm, n).

Proof. Let C be an [n, k]qm LRPC code of density 1. We need to show that there
exists a generator matrix G ∈ Fk×n

q of C. Let H be a parity-check matrix of C of
density 1 and rank n− k. Since H has density 1, we have 〈H〉Fq = 〈µ〉Fq where

µ ∈ F∗qm . Hence the matrix H ′ = µ−1H ∈ F(n−k)×n
q is another parity-check

matrix of density 1 of C.
Let H be the row-span of H ′ inside Fn

q . Then its orthogonal space H⊥ ⊆ Fn
q

has dimension k. Take a basis of this space and build a matrix G of which each
row is an element of this basis. Then G is a k × n matrix over Fq of rank k.
Clearly each row g of G is in C since H ′gᵀ = 0. Thus rowspanFqm

(G) ⊆ C. For

dimension reasons we can also see that C ⊆ rowspanFqm
(G). Hence G is actually

a generator matrix of C. The other implication follows in a similar way. ut

From Proposition 2 we can see that ELS and LRPC codes of density 1 are the
same set. Although ELS codes are a special case of LRPC codes, they are not
decodable because d = 1 < n

n−k for any nontrivial choice of k.

4 The Hybrid ELS codes

Suppose C is an ELS code of dimension k and an error e of rank r occurs. Since

its parity-check matrix H is in F(n−k)×n
q , each component of s = eHᵀ belongs
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directly to the error support. This implies 〈s〉Fq ⊆ 〈e〉Fq where equality holds
with a good probability when n− k > r. When expanding the system eHᵀ = s
over Fq, since the ranks of e and s both equal r, one obtains only (n−k)r linearly
independent equations in nr variables. Such a linear system has kr free variables
over Fq and therefore qkr possible solutions.

In the RSD problem the difficult part usually is to efficiently recover the
error support. With ELS this task becomes trivial. Nevertheless, the price to
pay is that the under-determinedness of the Fq-linear system makes this recovery
almost useless.

Next we propose a new family of rank metric codes that allow for efficient
decoding. The essential idea is to add extra rows of maximal density to the
parity-check matrix such that the number of linearly independent equations in
the expanded system can be increased.

Definition 7. Suppose H =

(
B
R

)
is a full-rank matrix, where B ∈ Fl×n

q and

R ∈ Ft×n
qm has density min{n,m}. A rank-metric code C ⊆ Fn

qm having H as a
parity-check matrix is called a Hybrid ELS code.

Let M be a matrix and CM denote the linear code over Fqm that admits M as its
parity-check matrix. Notice that a Hybrid ELS code CH having a parity-check
matrix H as in Definition 7 is the intersection of CB and CR, where CB and
CR are the codes having B and R as their parity-check matrices, respectively.
In particular we have CH ⊂ CB where CB is an ELS code. As we discussed, an
ELS code contains a large number of codewords of small rank weight and has
minimum rank distance 1. When the additional conditions represented by the
random submatrix R are added to the parity-check matrix H, they filter out
most of the codewords with small rank weights in CB .

Remark 1. Assume CB is an ELS code of dimension n− l. By Proposition 1 the
codewords of CB have rank weight upper bounded by n− l. Since CH ⊆ CB , the
same upper bound also applies to the codewords of CH .

The row-reduced echelon form of the generator matrix G of CH is considered
in the following lemma.

Lemma 1. Let H be an (l + t)× n matrix of the form

(
B
R

)
with B ∈ Fl×n

q of

rank l and R ∈ Ft×n
qm of rank t. Then it can be be reduced to the form

H ′ = THP =

(
Il 0 Bk −BtRk

0 It Rk

)
,

where T ∈ F(l+t)×(l+t)
qm is an invertible matrix, P ∈ Fn×n

q is a permutation

matrix, Bt ∈ Fl×t
q , Bk ∈ Fl×k

q and Rk ∈ Ft×k
qm .

Proof. For the matrix H, we can apply row operations on B and R separately.
Hence the row-reduced echelon form of B will still be a matrix over Fq. Applying
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a column permutation on the reduced form of B we will obtain a matrix in the
form

(
Il|Bt|Bk

)
. With the identity matrix Il we can reduce to 0 the first l

columns of R. We can then further reduce what is left to its row-reduced echelon
form. Putting reduced B and reduced R together, up to permutations of the
columns, we a reduced matrix of H with the following form(

Il Bt Bk

0 It Rk

)
.

By further applying row operations on the above matrix, one can easily obtain
the desired matrix H ′. ut

With the transformed parity-check matrix in Lemma 1, we discuss the rank
of codewords in Hybrid ELS codes below.

Proposition 3. Let CH be a Hybrid ELS code defined by a parity-check matrix

H =

(
B
R

)
. Then CH is equivalent to a code C′ that is defined by the following

generator matrix
G =

(
Bᵀ

k −R
ᵀ
kB

ᵀ
t Rᵀ

k Ik
)
,

where matrices Bk, Rk, Bt, Ik are as given in Lemma 1. Moreover, given a nonzero
message m ∈ Fk

qm , the rank of its corresponding codeword satisfies

rw(mG) = rw(m) + dim(〈mRᵀ
k〉Fq

)− dim(〈m〉Fq
∩ 〈mRᵀ

k〉Fq
) ≤ rw(m) + t. (3)

Proof. The fact that G is a generator matrix of CH is a direct consequence of
Lemma 1. A generic codeword v ∈ C′ can be written as

v = mG =
(
mBᵀ

k −mRᵀ
kB

ᵀ
t mRᵀ

k m
)
,

where m = (m1, . . . ,mk) ∈ Fk
qm . Observe that since Bk, Bt are two matrices

over Fq they will not expand the support of m. Thus,

〈mBᵀ
k −mRᵀ

kB
ᵀ
t 〉Fq

⊆ 〈mRᵀ
k〉Fq

.

Hence the rank of v can be given as

rw(v) = dim(〈v〉Fq
) = dim(〈m〉Fq

+ 〈mRᵀ
k〉Fq

),

= dim(〈m〉Fq
) + dim(〈mRᵀ

k〉Fq
)− dim(〈m〉Fq

∩ 〈mRᵀ
k〉Fq

).
(4)

Note that the vector mRᵀ
k has t components its rank weight is upper bounded

by t. Hence the desired result follows. ut

Remark 1 Observe that given a uniformly chosen random matrix R̂ ∈ Fk×(k+t)
qm ,

its row reduced echelon form, up to column permutation, would be of the form
(Ik|Rt), where Rt ∈ Fk×t

qm is a random matrix. The expected weight distribution
of a hybrid-ELS code with parameters l, t, k, n over Fqm will be therefore the same
as the expected weight distribution a random Fqm-linear code of length k+ t and
dimension k.
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Given a random matrix Rt, we can assume the components of mRt to be
uniformly distributed random elements of Ft

qm . Under this assumption, if t� m,
with a high probability the Fq-vector space generated by the components of mRt

has dimension t for a nonzero message m ∈ Fk
qm . Therefore,

rw(m(Ik|Rt)) = dim(〈m〉Fq
+ 〈mRt〉Fq

)

= dim(〈m〉Fq
) + dim(〈mRt〉Fq

− dim(〈m〉Fq
∩ 〈mRt〉Fq

).

The intersection of two Fq-linear subspaces in Fqm , when the sum of their di-
mensions is smaller than m, is in general null or very small. If a message m
has rank rw(m)� m, then rw(m(Ik|Rt)) ≤ rw(m) + t, where the equality holds
in most of the cases, especially when rw(m) + t is small compared to m.

This remark sets a rough upper bound of t+ 1 on the minimum distance of
an hybrid ELS code. Moreover, it provides a rough estimation on the coefficients
of low-degree terms in the rank weight enumerator of the code.

5 Rank Syndrome Decoding of Hybrid ELS Codes

The syndrome decoding algorithms of Gabidulin codes and LRPC codes can be
generally divided into two steps: the first is to recover the error support and the
second is to establish the error components by solving an expanded system of
Fq-linear equations.

Consider a Hybrid ELS code C having parity-check matrix H =

(
B
R

)
, where

B ∈ Fl×n
q and R ∈ Ft×n

qm . Suppose we receive the vector y = c + e, where c ∈ C

and e is an error of rank rw(e) = r. The support E of e is generated by r elements
as 〈e〉Fq = 〈ε1, . . . , εr〉Fq .

Step 1 - Error Support Recovering
Let B ∈ Fl×n

q and R ∈ Ft×n
qm , the syndrome s = eHᵀ can be divided into two

parts: one part comes from B and the other comes from R.
The first l components of s are the result of eBᵀ. Since the entries of B

are all in Fq, it means 〈s1, . . . sl〉Fq ⊆ E. Note that the components of e can be
considered as uniformly random elements sampled from E and B has rank l. The
elements s1, . . . , sl can then be considered as l uniformly random elements of E.
Since we know dim(E) = r, when l > r we have 〈s1, . . . , sl〉Fq

= E with a good
probability, which will be discussed in next section.

Step 2 - Error Vector Recovering
With the error support E = 〈ε1, . . . , εr〉Fq

obtained from Step 1, we can
rewrite the error as e = (ε1, . . . , εr)X. We can expand over Fq the system of l+ t
equations given by eHᵀ = s as

si =

n∑
j=1

hi,jej =

n∑
j=1

hi,j

r∑
k=1

xj,kεk, xj,k ∈ Fq. (5)
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From (5) one obtains a system of equations with nr variables xj,k ∈ Fq. In
the first l equations the terms hi,j = bi,j ∈ Fq. We can decompose si as si =
si,1ε1 + · · ·+ si,rεr. Therefore (5), for i ≤ l, can be rewritten as

n∑
j=1

r∑
k=1

bi,jxj,kεk =

r∑
k=1

εk

 n∑
j=1

bi,jxj,k

 = si = si,1ε1 + · · ·+ si,rεr. (6)

Hence, from equation (6), we derive r equations in the form
∑n

j=1 bi,jxj,k = si,k.
As i ranges from 1 to l, we obtain lr equations. We define Bexp = Ir ⊗ B and
the two vectors over Fq:

x =(x1,1, . . . , xn,1, . . . , x1,r, . . . , xn,r),

s̃l =(s1,1, . . . , sl,1, . . . , s1,r, . . . , sl,r).

We can rewrite (6) as Bexpx
ᵀ = s̃ᵀl . This system has only lr equations while we

have nr variables. In order to have a unique solution, we need more equations
and we can get them from the expansion of the t equations given by R.

Note that the system in (5) for l < i ≤ l + t is

n∑
j=1

r∑
k=1

ri,jxj,kεk =

n∑
j=1

r∑
k=1

xj,k(ri,jεk) = si,

which, by the definition of x, can be rewritten as

[(ε1, . . . , εr)⊗ (ri,1, . . . , ri,n)] · xᵀ = si,

where (ε1, . . . , εr)⊗(ri,1, . . . , ri,n) = (ε1ri,1, . . . , ε1ri,n, . . . , εrri,1, . . . , εrri,n). Fur-
thermore, the t linear equations over Fqm can be rewritten as

[(ε1, . . . , εr)⊗R] · xᵀ = sᵀt ,

where st denotes the vector of the last t components of s.

Let α1, . . . , αm be a basis of Fqm over Fq.

n∑
j=1

r∑
k=1

xj,k(ri,jεk) =

n∑
j=1

r∑
k=1

m∑
u=1

xj,k(ri,jεk)(u)αu =

m∑
u=1

si,uαu, (7)

where (ri,jεk)(u) denotes the u-th coordinate with respect to α1, . . . , αm. From
each row of R we will derive m equations

n∑
j=1

r∑
k=1

xj,k(ri,jεk)(u) = si,u.

Let s̃t = (sl+1,1, . . . , sn−k,1, . . . , sl+1,m, . . . , sn−k,m) ∈ Ftm
q . Denote by Rk = εkR

the scalar multiplication of all the entries of R by εk. For the basis α1, . . . , αm of
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Fqm , we can decompose Rk as Rk = α1R
(1)
k + . . .+αmR

(m)
k . Then the expanded

linear system given by R can be expressed as

Rexp · xᵀ = s̃ᵀt ,

where the matrix Rexp is given by

Rexp =


R

(1)
1 R

(1)
2 . . . R

(1)
r

R
(2)
1 R

(2)
2 . . . R

(2)
r

...
...

. . .
...

R
(m)
1 R

(m)
2 . . . R

(m)
r

 . (8)

The whole expanded system can be expressed as

x ·Hᵀ
exp = x · (Bᵀ

exp|Rᵀ
exp) = (s̃l|s̃t). (9)

Note that there are lr + tm Fq-linear equations in (9). When lr + tm ≥ nr,
with a good probability there will be nr linearly independent equations, which
give a unique solution of the expanded system. Suppose only u < nr of the
above mentioned lr + tm equations are linearly independent, it is still possible
to perform a list decoding with qnr−u elements in the list.

5.1 Necessary conditions on parameters

Let Hᵀ = (Bᵀ|Rᵀ) be the transposed parity-check matrix of a hybrid ELS code
C of dimension k. In the previous section we saw how to correct an error of
small rank r starting from the syndrome. Here we will discuss some necessary
conditions on the parameters l and t so as to uniquely correct such an error.

Consider B ∈ Fl×n
q and R ∈ Ft×n

qm , since H has n − k rows we necessarily
have n−k = l+ t. In Step 1, in order to recover the error support of an error of
rank r, we need l ≥ r. In Step 2 we need that nr ≤ lr+ tm. Since n = l+ t+ k
we have (l + t+ k)r ≤ lr + tm. This gives the following bounds on l:

r ≤ l ≤ (n− k)− kr

m− r
. (10)

5.2 Probability of decoding failure

In the decoding algorithm, Step 1 and Step 2 both have non-null probabilities
of failure. For each step we will try to model the probability of failure. We express
the error e as (ε1, . . . , εr)X, where X ∈ Fr×n

q and 〈ε1, . . . , εr〉Fq
= 〈e〉Fq

= E.

Step 1. This step only involves eBᵀ = (s1, . . . , sl). We want to give a heuristic
for the probability that 〈s1, . . . , sl〉Fq

= E. Since B ∈ Fl×n
q is a random matrix

and 〈e〉Fq
= E, we can consider s1, . . . , sl as random elements of E. We can

expand each of these terms over a basis of E. In this way the vector (s1, . . . , sl)
becomes a random r× l matrix S. The condition 〈s1, . . . , sl〉Fq = E is equivalent
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to rank(S) = r. Let Nq(k, n, r) be the number of k× n matrices over Fq of rank
r. This number can be computed as [1]:

Nq(k, n, r) =
Aq(n, r)Aq(k, r)

Aq(r, r)
=

r−1∏
i=0

(qn − qi)(qk − qi)
qr − qi

. (11)

The success probability of this step can be modeled as

P (〈s1, . . . , sl〉 = E) =
Nq(r, l, r)

qlr
=

∏r−1
i=0 (ql − qi)

qlr
=

r−1∏
i=0

(1− qi−l)

The probability of failure is then approximated as follows:

P (〈s1, . . . , sl〉 6= E) = 1− Nq(r, l, r)

qlr
≈ 1−

(
1−

r−1∑
i=0

qi−l

)
≈ 1

(q − 1)ql−r
. (12)

Step 2. In this step we have to solve a system of lr + tm ≥ nr linear equations
in nr variables. Recall that this system can be formulated as in (9), where
Hexp = (Bᵀ

exp|Rᵀ
exp) is an (lr + tm) × nr matrix over Fq. In order to have a

unique solution, we require this matrix to have rank nr.
Here we treat Bexp and Rexp separately. It is easy to see that Bexp = Ir ⊗B

in Flr×nr
q has full rank lr. The matrix Rexp is fully determined by the values of

R and (ε1, . . . , εr). Hence it is challenging to describe its expected rank as it is
not a truly random matrix. Indeed the rank of Rexp could depend partly on the
error support. On the other hand, experimental results indicate that the ranks
of Rexp behave similarly to the rank of random matrices of the same size. In
other words, although the matrix Hexp is not random, the rank of Hexp appears
to follow the probability distribution

P (rank(Hexp) = z) = Nq(tm+ lr, nr, z)/qnr(tm+lr).

To illustrate this behavior we run a test in Magma with two sets of parame-
ters. For each set of parameters, we generate 1000 matrices Hexp, 1000 random
matrices of the same size and then compute their ranks. The experimental re-
sults are summarized in Table 1. In Table 1, for a given value of the parameters
〈qm, n, l, t, r〉, the upper part of a row lists the number of matrices Hexp with
ranks in the range [nr − 4, nr] and the lower part lists the number of random
matrices of the same rank. The first set of parameters in Table 1 represents a
limit case that lr + tm − nr = 0. As shown in Table 1, even in the limit case,
there were just relatively few cases where rank(Hexp) = nr − 3, for which we
would still be able to use a list decoding with list size 8. In the second set of
parameters, we have lr + tm − nr = 4. With this small difference, we see that
the ranks of the Hexp instances tend to rapidly concentrate on the first column.

To conclude this section, we illustrate the overall error correction capability
of the Hybrid ELS codes with the unique decoding algorithm for different pa-
rameters as in Table 2. The results in Table 2 were obtained by running 1000
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Parameters Ranks
〈qm, n, l, t, r〉 nr nr − 1 nr − 2 nr − 3 nr − 4

〈215, 25, 10, 4, 4〉 297 565 132 6 0
285 587 123 5 0

〈214, 20, 12, 2, 3〉 930 69 1 0 0
937 63 0 0 0

Table 1. Rank distribution of Hexp and random matrices

〈qm, n, l, t, r〉 Support Recovery Error Recovery

〈215, 20, 10, 4, 6〉 95.2% 57.1%

〈215, 20, 10, 4, 5〉 97.4% 97.4%

〈215, 20, 10, 4, 4〉 98.3% 98.3%

〈223, 30, 15, 4, 6〉 99.9% 86.3%

〈223, 30, 15, 5, 6〉 99.8% 99.8%

〈223, 30, 16, 5, 6〉 100% 100%

〈710, 19, 9, 4, 4〉 100% 85.4%

〈711, 19, 9, 4, 4〉 100% 100%

Table 2. Success rate of decoding HELS codes

randomly generated examples for each set of parameters. Experimental results
show that the proposed codes can outperform the LRPC codes in terms of er-
ror correcting rate. Nevertheless, our analysis indicates that the proposed codes
are not as properly masked in the same way as LRPC codes for cryptographic
applications.

5.3 Cryptographic weakness

Last point is not that surprising since also in the hamming weight it is pretty
trivial to solve the shortest vector problem when the weight is 1.

The main concern in using hybrid ELS codes for cryptography is related to
the structure of their parity-check matrix. Suppose C is a hybrid ELS codes

having parity-check matrix H =

(
B
R

)
. As a public key we have to share G a

generator matrix for C from which it is difficult to reconstruct H. To succeed
an attacker does not need to find exactly the same H, it would be sufficient to

find a parity-check matrix H ′ =

(
B′

R′

)
such that B′ ∈ Fl×n

q in order to correct.

Finding B′ with this property is equivalent to find l linearly independent vectors
of rank weight 1 in C⊥. We know that such vectors always exist by construction.
Moreover the attacker can always compute a base of C⊥ from the generator
matrix G of C. The problem of finding a base in the desired form can be reduced
to the problem of finding l linearly independent vectors in C⊥ having rank weight
1. Find a vector of rank 1 is not difficult. Suppose vC⊥ is a vector of rank 1, so
its support given by 〈v〉Fq = 〈α〉Fq for some α ∈ Fqm . Thanks to Fqm -linearity
without loss of generality we can consider 〈v〉Fq

= Fq. We just have to determine
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the n coordinates of this vector. This can be done expanding over Fq the system
given by G. Noticing that G is a parity-check matrix of C⊥. The expansion will
give us mk equations over Fq, the solution to this system will be exactly the
space generated by the rows of B.

6 Conclusion

In the paper we propose a new random-like rank metric codes that can be effi-
ciently decoded with a polynomial-time complexity. The proposed codes appear
to have reasonably good error-correcting capability, owing to the special struc-
ture of their parity-check matrices.

References

1. G. E. Andrews. The Theory of Partitions. Cambridge University Press, 2003.
2. N. Aragon, P. Gaborit, A. Hauteville, O. Ruatta, and G. Zémor. Low rank parity

check codes: New decoding algorithms and applications to cryptography. IEEE
Transactions on Information Theory, 65(12):7697–7717, 2019.

3. P. Delsarte. Bilinear forms over a finite field, with applications to coding theory.
Journal of Combinatorial Theory, Series A, 25(3):226 – 241, 1978.

4. E. M. Gabidulin. Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii, 21(1):3–16, 1985.

5. E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-
commutative ring and their application in cryptology. In D. W. Davies, editor,
Advances in Cryptology – EUROCRYPT’91, pages 482–489. Springer, 1991.

6. P. Gaborit, A. Hauteville, D. H. Phan, and J.-P. Tillich. Identity-based encryption
from codes with rank metric. In J. Katz and H. Shacham, editors, Advances in
Cryptology – CRYPTO 2017, pages 194–224. Springer International Publishing,
2017.

7. P. Gaborit, O. Ruatta, and J. Schrek. On the complexity of the rank syndrome
decoding problem. IEEE Transactions on Information Theory, 62(2):1006–1019,
2016.

8. P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor. Ranksign: an efficient signa-
ture algorithm based on the rank metric. In M. Mosca, editor, Post-Quantum
Cryptography, pages 88–107. Springer International Publishing, 2014.

9. P. Gaborit and G. Zémor. On the hardness of the decoding and the minimum
distance problems for rank codes. IEEE Transactions on Information Theory,
62(12):7245–7252, 2016.

10. M. Gadouleau and Z. Yan. On the decoder error probability of bounded rank-
distance decoders for maximum rank distance codes. IEEE Transactions on Infor-
mation Theory, 54(7):3202–3206, 2008.

11. C. A. Melchor, N. Aragon, M. Bardet, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, A. Hauteville, A. Otmani, O. Ruatta, J.-P. Tillich, and
G. Zémor. ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). In Second
round submission to the NIST post-quantum cryptography call, April, 2020.

12. Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor. Low rank
parity check codes and their application to cryptography. in proceedings of the
workshop on coding and cryptography WCC’2013 Bergen Norway 2013. available
on www.selmer.uib.no/wcc2013/pdfs/gaborit.pdf.

12



13. R. M. Roth. Maximum-rank array codes and their application to crisscross error
correction. IEEE Transactions on Information Theory, 37(2):328–336, 1991.

14. D. Silva, F. R. Kschischang, and R. Koetter. A rank-metric approach to error
control in random network coding. IEEE Transactions on Information Theory,
54(9):3951–3967, Sept 2008.

13


