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Abstract. In this paper we use a method of Carlet [7], which con-
structs APN functions using the Maiorana-McFarland bent function,
and investigate, in any prime characteristic p, some of these concate-
nations through the prism of the newly defined concept of c-differential
uniformity. Among other results, we show that for example, F (x, y) =
(xy, L(xy)) is APcN on Fp2m for all c = (1, c2) ∈ Fpm × Fpm , where L is
a linearized polynomial on Fpm ; also, for m,n integers with n = 2m ≥ 2,

the c-differential uniformity of the function F (x, y) =
(
xy,Axpk+1 +Bypk+1

)
on F2m ×F2m is pgcd(k,m) +1, for all c = (1, c2), 1 ̸= c2 ∈ Fpm , , AB ̸= 0,
A,B ∈ F2m .
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1 Introduction and basic definitions

In [12] we defined a new differential and Difference Distribution Table, in any
finite field, and the corresponding perfect/almost perfect c-nonlinear functions
and other notions (independently, in [3] the concept of quasi planarity was devel-
oped: a quasi planar function is a perfect c-nonlinear function for c = −1 – see
below). This was prompted by a challenge from [5], who extended the differential
attack on some ciphers by using a different type of differential. Right after the
introduction of this concept, we extended the notion of Boomerang Connectivity
Table in [18] and characterized some of the known perfect nonlinear functions
and the inverse function through this new concept. In [1,2,12,17,20,21,13,25,24]
various characterizations of the c-differential uniformity were found, and some of
the known perfect and almost perfect nonlinear functions have been investigated.
An approach on boomerang uniformity based upon Weil sums and characters
was developed in [19].



Let p be a prime number and n be a positive integer n. We let Fpn be the
finite field with pn elements, and F∗

pn = Fpn \{0} be the multiplicative group; for

a ̸= 0, we often write 1
a to mean the inverse of a in the multiplicative group. We

let Fn
p be the n-dimensional vector space over Fp. We use #S, S̄ to denote the

cardinality of a set S, respectively, the complement of S in a superset (usually,
Fpn), which will be clear from the context.

We call a function from Fpn (or Fn
p ) to Fp a p-ary function on n variables.

For positive integers n and m, any map F : Fpn → Fpm (or, Fn
p → Fm

p ) is
called a vectorial p-ary function, or (n,m)-function. When m = n, F can be
uniquely represented as a univariate polynomial over Fpn of the form F (x) =∑pn−1

i=0 aix
i, ai ∈ Fpn , whose algebraic degree is then the largest p-ary weight

of the exponents i with ai ̸= 0. We let Trn : Fpn → Fp be the absolute trace

function, given by Trn(x) =

n−1∑
i=0

xpi

. Also, Trd(x) =
∑n

d −1
i=0 xpdi

is the relative

trace from Fpn → Fpd , where d |n.
For a Boolean or p-ary function f : Fpn → Fp, we define theWalsh-Hadamard

transform to be the complex-valued function (ζp = e
2π i
p is a complex p-root of

1; if p = 2, ζp = −1)

Wf (u) =
∑

x∈Fpn

ζf(x)+Tr(ux)
p .

For an (n, n)-function F and for a, b ∈ F2n , we let the Walsh transform WF (a, b)
of F to be the Walsh-Hadamard transform of its component function Trn1 (bF (x))
at a, that is,

WF (a, b) =
∑

x∈Fpn

ζTr(bF (x)+ax)
p .

A bent function (p-ary or vectorial (n, k); it is known that k ≤ n/2) is a function
which has all of its absolute Walsh-Hadamard coefficients equal to pn/2. As an
example of bent function, we give the Maiorana-McFarland function F (x, y) =
xy on Fpm × Fpm → Fpm .

As we did in [12], for a p-ary (n,m)-function F : Fpn → Fpm , and c ∈ Fpm ,
the (multiplicative) c-derivative of F with respect to a ∈ Fpn is the function

cDaF (x) = F (x+ a)− cF (x), for all x ∈ Fpn .

For an (n, n)-function F , and a, b ∈ Fpn , we let the entries of the c-Difference
Distribution Table (c-DDT) be defined by c∆F (a, b) = #{x ∈ Fpn : F (x+ a)−
cF (x) = b}. The c-differential uniformity of F is

c∆F = max {c∆F (a, b) : a, b ∈ Fpn , and a ̸= 0 if c = 1} .

1. If c∆F = δ, then we say that F is differentially (c, δ)-uniform (or that F has
c-uniformity δ).

2. If δ = 1, then F is called a perfect c-nonlinear (PcN) function (for c = 1,
they only exist for odd characteristic p; however, there exist PcN functions
for p = 2, for all c ̸= 1, as shown in [12]).



3. If δ = 2, then F is called an almost perfect c-nonlinear (APcN) function.

It is easy to see that if F is an (n, n)-function, that is, F : Fpn → Fpn , then F is
PcN if and only if cDaF is a permutation polynomial. For c = 1, we obtain the
classical derivative, PN, APN, etc., differential uniformity and DDT.

The reader can consult [6,9,11,15,23] for more on cryptographic Boolean func-
tions and their properties.

2 Carlet, Zhou-Pott and Taniguchi classes of APN
functions

In [7], Carlet showed that for A,B,C,D ∈ Fpm , AB ̸= 0, and for any integers
i, j with gcd(m, i− j) = 1, the function F1 : Fpm × Fpm → Fpm × Fpm , built up
via the Maiorana-McFarland bent function xy, namely,

F1(x, y) = (xy,G1(x, y)), where

G1(x, y) = Axpi+pj

+ Cxpi

yp
j

+Dxpj

yp
i

+Byp
i+1

(1)

is APN if and only if G1(x, 1) = Axpi+pj

+Cxpi

+Dxpj

+B has no root in Fpm .
Zhou and Pott [26] found yet another class for m even,

F2(x, y) = (xy,G2(x, y)), where

G2(x, y) = xpk+1 + αy(p
k+1)pj

,
(2)

with gcd(m, k) = 1, and j a positive integer. The APN-ess of F2 is completely

characterized via the condition α ̸∈ {apk+1(tp
k

+ t)1−pj

: a, t ∈ Fpm} (if j is
even and α is not a cube is a sufficient condition for this to happen).

Carlet [8] extended these results and gave a general criterion for the APN-

ess of functions of the form F (x, y) = (xy,G(x, y)), where G(x, y) = P (xpi+1)+

Q(xpi

Y )+R(xyp
i

)+S(yp
i+1), for some linear functions P,Q,R, S, and gcd(m, i) =

1. Precisely, he showed that F is APN if and only if for all (a, b) ̸= (0, 0), letting

Ta,b(y) = P (ap
i+1y) +Q(ap

i

by) +R(abp
i

y) + S(bp
i+1y), then:

– if m is odd, then Ta,b is a permutation;

– if m is even, then the kernel ker(Ta,b) ∩ {upi+1(tp
i

+ t) : u, t ∈ Fpm} = {0}.

Recently, Taniguchi [22] proposed yet another class,

F3(x, y) = (xy,G3(x, y)), where

G3(x, y) = xp3i+p2i

+ αxp2i

yp
i

+ βyp
i+1,

(3)

where, gcd(m, i) = 1, α ∈ Fpm , β ∈ F∗
pm . In this case, F is APN if and only if

G3(x, 1) = xpi+1 +αx+ β has no root in Fpm . If α = 0, this function belongs to
the Zhou-Pott [26] class. In general, Taniguchi functions are CCZ-inequivalent



to F1, F2. Taking P (x) = xpi

, Q(x) = αxpi

, R(x) = 0, S(x) = βx, we see that
Taniguchi functions are part of Carlet’s class [8].

It is the intent of this paper to investigate some of these classes and derive
conditions on G such that F (x, y) = (xy,G(x, y)) has the newly defined concept
of c-differential uniformity equal to δ (in particular, we will construct PcN/APcN
functions via the Maiorana-McFarland bent function).

3 The results

Let p be a prime number. We first derive general conditions such that F :
Fpm ×Fpm → Fpm ×Fpm , F (x, y) = (xy,G(x, y)) has its c-differential uniformity

c∆f ≤ δ. We adopt the usual convention that 0−1 = 0.

Theorem 1 Let δ be a positive integer, F : Fpm×Fpm → Fpm×Fpm be an (n, n)-
function, n = 2m, defined by F (x, y) = (xy,G(x, y)), where G : Fpm × Fpm →
Fpm × Fpm is an arbitrary (n, n)-function. Then, the c = (1, c2)-differential uni-
formity of F satisfies c∆F ≤ δ, if and only if:

(1) For all y fixed, Gy(x) = G(x, y) has the c2-differential uniformity c2∆Gy
≤ δ;

(2) For all x fixed, Gx(y) = G(x, y) has the c2-differential uniformity c2∆Gx ≤ δ;
(3) For all (a, b), (e, d) ∈ Fpm × Fpm , with ab ̸= 0, the equation Ga,b,d(x +

1) − c2Ga,b,d(x) = e has at most δ solutions, that is, c2∆Ga,b,d
≤ δ, where

Ga,b,d(x) = G(ax,−bx+ d).

If c1 ̸= 1, then c∆F ≤ δ, if and only if δ1 + δ2 ≤ δ, where δ1, δ2 is the maximum
number of solutions for (with α = 1

c1−1 )

G (a(1 + α), y + b)− c2G (aα, y) = e,

respectively,

G

(
x+ a, b(1 + α) +

dα2 + ab(1 + α)α

x− aα

)
− c2G

(
x, bα+

dα2 + ab(1 + α)α

x− aα

)
= e,

where a, b, d, e ∈ Fpm .

Proof. Next, we consider the differential equation of F at (a, b), (d, e) ∈ Fpm ×
Fpm , for (1, 1) ̸= c = (c1, c2), c1, c2 ∈ Fpm :

F (x+ a, y + b)− cF (x, y) = (d, e),

that is, {
(1− c1)xy + bx+ ay = d− ab

G(x+ a, y + b)− c2G(x, y) = e.
(4)

Case 1. Let c1 = 1 (hence c2 ̸= 1). We note that the system has at most δ
solutions if and only if:

(1) For all y fixed, Gy(x) = G(x, y) has the c2-differential uniformity c2∆Gy ≤ δ
(this corresponds to b = 0);



(2) For all x fixed, Gx(y) = G(x, y) has the c2-differential uniformity c2∆Gx ≤ δ
(this corresponds to a = 0);

˜(3) For all (a, b), (e, d) ∈ Fpm ×Fpm with ab ̸= 0 (note that y = d−ab
a − b

ax), then

G(x+a,− b
ax+

d−ab
a + b)+ c2G(x,− b

ax+
d−ab
a ) = e has at most δ solutions.

As Carlet did in [7] for c = 1, replacing x by ax, d−ab
a by d, and labeling

Ga,b,d(x) = G(ax,−bx+ d), Condition ˜(3) is thus equivalent to:

(3) For all (a, b), (e, d) ∈ Fpm × Fpm , with ab ̸= 0, the equation Ga,b,d(x + 1) −
c2Ga,b,d(x) = e has at most δ solutions, that is, c2∆Ga,b,d

≤ δ.

Further, if G is quadratic, then one can merge the expressions in d into the
constant e and consequently, one can assume that d = 0, in that case.
Case 2. Let c1 ̸= 1. If x = a

c1−1 in (4), then the first equation is independent of

y, d = abc1
c1−1 , and so, the solutions (x, y) =

(
a

c1−1 , y
)
of (4) satisfy

G

(
ac1

c1 − 1
, y + b

)
− c2G

(
a

c1 − 1
, y

)
= e.

Let δ1 be the number of solutions for the above equation.
We now assume that x ̸= a

c1−1 , and so, the first equation of (4) renders y =
b

c1−1+
d+abc1

(1−c1)((1−c1)x+a) (observe that x and y are in one-to-one correspondence).

Thus, the solutions x for the second equation of (4) satisfy

G

(
x+ a,

bc1
c1 − 1

+
d+ abc1

(1− c1)((1− c1)x+ a)

)
− c2G

(
x,

b

c1 − 1
+

d+ abc1
(1− c1)((1− c1)x+ a)

)
= e.

Let δ2 be the number of solutions x for the above equation.
Consequently, we must have δ1 + δ2 ≤ δ, and the theorem is shown.

We now proceed to give some concrete examples based upon our previous
result.

Theorem 2 Let m ≥ 2, F : Fpm × Fpm → Fpm × Fpm be the quadratic function
defined by F (x, y) = (xy, L(xy)), where L ∈ Fpm [x] is a linearized permutation
polynomial on Fpm . Then c∆F = 2 (F is APcN ), for all c = (1, c2), c2 ∈ Fpm .

Proof. We first let c = (1, c2) ∈ Fpm × Fpm , c2 ̸= 1. By Theorem 1, we need to
show that both y → L(xy) and x → L(xy) are PcN. Since the arguments are
similar, we will show the first claim, only. For arbitrary a, e, c2 and fixed y in
Fpm , the corresponding c-differential equation for y → L(xy) is then

L((x+ a)y)− c2L(xy) = e,

which is equivalent to L(xy) = e−L(ay)
1−c2

, which has only one solution x since L
is a permutation polynomial.



We now look at the third condition of Theorem 1 for ab ̸= 0. We need to
show that for fixed 1 ̸= c2, and arbitrary ab ̸= 0, e, d, all in Fpm , we have only
one solution x for the equation

L ((ax+ a)(−bx− b+ d)− c2L(ax(−bx+ d)) = e.

This is equivalent to

(1− c2)L(ax(−bx+ d)) + L(−2abx) = e− L(a(b− d)),

and further,

L(ab(c2 − 1)x2 + a((1− c2)d− 2b)x) = e− L(a(b− d)).

Since L is a permutation polynomial, writing ℓ0 = L−1 (e− L(a(b− d))), the
above equation is then ab(c2 − 1)x2 + a((1− c2)d− 2b)x− ℓ0 = 0, which has at
most two solutions. The bound is easily attained, which can be seen by taking
e = 0, b = d and so, ℓ0 = 0, with our equation becoming x((c2−1)x−(c2+1)) = 0
of solutions x = 0, c2+1

c2−1 . The solutions are distinct unless p > 2 and c2 = −1.
In that case, is is easy to choose ℓ0 such that the discriminant of the quadratic
equation is a square, and consequently the equation has two roots. The proof is
done.

Surely, there are other forms for G one can consider, obtaining low c-differential
uniformity via this method, and we challenge the readers to do so. In that spirit,
we would like to investigate the c-differential uniformity of this construction if
G is defined via the usual PN/APN candidates (Gold, inverse, etc.).

Theorem 3 Let p be a prime number, m,n integers with n = 2m ≥ 2, and

F (x, y) =
(
xy,Axpk+1 +Byp

k+1
)
on Fpm × Fpm , AB ̸= 0, A,B ∈ Fpm . Then,

if c = (1, c2), 1 ̸= c2 ∈ Fpm , the c-differential uniformity of F is pgcd(k,m) + 1.

Proof. From Theorem 1, we need to show that both y → G(x, y) = xpk+1+yp
k+1,

as well as x → G(x, y) have their c-differential uniformities upper bounded by
pgcd(k,m) + 1. We will only argue the first claim, as the second is similar. Thus,
for a, e ∈ F2m , we need to consider the equation

A(x+ a)p
k+1 +Byp

k+1 − c2Axpk+1 − c2Byp
k+1 = e,

that is,

A(x+ a)p
k+1 − c2Axpk+1 = e− (1− c2)Byp

k+1,

which is a c2
A -differential uniformity equation for the Gold function x → xpk+1.

From [17], if p = 2, the Gold function has differential uniformity 2gcd(2k,m)−1
2gcd(k,m)−1

, for
c2
A ∈ F2gcd(k,m) and 2gcd(k,m) + 1, if c2

A /∈ F2gcd(k,m) . If p > 2, and c2
A ∈ Fpgcd(k,m) ,

the c2-differential uniformity is gcd(pk +1, pm− 1). If p > 2, and c2
A /∈ Fpgcd(k,m) ,

the c2-differential uniformity of F is pgcd(k,m) + 1 (see [12,17,24]).



Now, we need to investigate the equation

G(ax+ a,−bx− b+ d)− c2G(ax,−bx+ d) = e,

which is equivalent to

A(ax+ a)p
k+1 +B(−bx− b+ d)p

k+1 − c2Aap
k+1xpk+1 − c2B(−bx+ d)p

k+1 = e.

By expanding and combining terms, we can write

(1− c2)(Aap
k+1 +Bbp

k+1)xpk+1 + (Aap
k+1 +Bbp

k+1 + (c2 − 1)Bbp
k

d)xpk

+ (Aap
k+1 +Bbp

k+1 + (c2 − 1)Bbdp
k

)x− e0 = 0,

where e0 = e−Aap
k+1 −Bbp

k+1 +Bdbp
k

+Bbdp
k

+B(c2 − 1)dp
k+1. By a result

of Bluher [4] (see, also [16]), the above equation has 0, 1, 2, or pgcd(k,m)+1 roots
(for us, the upper bound is attainable for some a, b, e, since our free term is linear

in e). By [12, Lemma 9], gcd(pk + 1, pm − 1) = 2gcd(2k,m)−1
2gcd(k,m)−1

, if p = 2, if p > 2,

gcd(pk + 1, pm − 1) = 2, when m
gcd(m,k) is odd, respectively, pgcd(k,m) + 1, when

m
gcd(m,k) is even. Thus, pgcd(k,m) +1 is an upper bound, and the claim is shown.

If we useG(x, y) = xpn−2+yp
n−2 in the construction of F (x, y) = (xy,G(x, y)),

then Conditions (1) and (2) of Theorem 1 will work out nicely for Gy, Gx, since

c2∆Gx = c2∆Gy = c2∆inverse ∈ {2, 3} (see [12]). However, Condition (3), for
ab ̸= 0, a = b, d = 0, will happen for all x, and consequently, the c = (1, c2)-
differential uniformity for F becomes 2m, which is the worst, for this construc-
tion.

We now let G(x, y) = Axpk

y + Bxyp
k

+ Cx + Dy and show the following
result.

Theorem 4 Let F (x, y) = (xy,Axpk

y +Bxyp
k

+Cx+Dy), A,B,C,D ∈ Fpm ,

with ABCD ̸= 0 and −B
A /∈ {upgcd(k,m)−1 : u ∈ Fpm}. Then the c-differential

uniformity of F is pgcd(k,m) + 1. In particular, if p = 2 and gcd(k,m) = 1, we
get the low c-differential uniformity of 3.

Proof. We first check Condition (1) (similarly, for Condition (2)) of Theorem 1,
and look at the equation in x (y is fixed), Gy(x+ a)− c2Gy(x) = e, namely,

Axpk

y +Aap
k

y +Bxyp
k

+Bayp
k

+ Cx+ Ca+Dy

− c2Ayxpk

− c2Byp
k

x− c2Cx− c2Dy = e,

that is,

A(1− c2)yx
pk

+ (1− c2)(C + byp
k

)x− e0 = 0,

where e0 = e+ aC + yD + aByp
k

+ Aap
k −Dc2y. A linearized trinomial xpk

+
αx+β has either 0, 1, 2, or pgcd(k,m) roots (see [10]), and so, the above displayed
equation has at most pgcd(k,m) roots.



We next look at Condition (3) of Theorem 1, namely, the equation

A(ap
k

xpk

+ ap
k

)(−bx− b+ d) +B(ax+ a)(−bp
k

xpk

+ (−b+ d)p
k

)

+ (aC − bD)x+ aC − bD + dD − c2Aap
k

xpk

(−bx+ d)

− c2B(ax)(−bp
k

xpk

+ dp
k

)− c2Cax− c2D(−bx+ d) = e,

which is equivalent to

(c2 − 1)(Abap
k

+Babp
k

)xpk+1 − (Abap
k

+Babp
k

− (1− c2)Adap
k

)xpk

− (Abap
k

+Babp
k

+ (1− c2)Badp
k

− (1− c2)aC + (1− c2)bD)x− e0 = 0,

with e0 = e−Aap
k

(−b+d)−Ba(−b+d)p
k−Ca+Db−dD+dc2D. The coefficient

Abap
k

+ Babp
k

of xpk+1 is never zero, since if it were then
(
a
b

)pk−1
= −B

A , and

so, −B
A would be a pgcd(k,m)−1 power, but our imposed condition prohibits that.

Consequently, via [4,16], the upper bound pgcd(k,m) + 1 for the number of roots
of the above equation holds. The result is shown.

4 Concluding remarks

In this paper, we investigate the c-differential uniformity of some functions con-
structed concatenating the outputs of some (n,m)-bent functions (n = 2m). As
a by-product, we obtain an infinite class of PcN/APcN quadratic functions. On
the other hand, we argue that using this construction, based upon the Maiorana-
McFarland bent function, as well as a direct sum of Gold functions or inverse
functions, the c-differential uniformity (for c ̸= 1), in general increases, though
there are some cases when its value is low.
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