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Abstract. More than 50 years ago, Golomb and Welch conjectured that
there is no perfect Lee codes C of minimum distance 2r + 1 in Zn for
r ≥ 2 and n ≥ 3. Recently, Leung and the second author proved that
if C is linear, then the Golomb-Welch conjecture is valid for r = 2 and
n ≥ 3. In this paper, we consider the classification of linear Lee codes
with the second best possibility, that is the density of the lattice packing
of Zn by Lee spheres S(n, r) equals |S(n,r)|

|S(n,r)|+1
. We show that, for r = 2

and n ≡ 0, 3, 4 (mod 6), this packing density can never be achieved.
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1 Introduction

Let Z denote the ring of integers. For two words x = (x1, · · · , xn) and y =
(y1, · · · , yn) ∈ Zn, the Lee distance (also known as `1-norm, taxicab metric,
rectilinear distance or Manhattan distance) between them is defined by

dL(x, y) =

n∑
i=1

|xi − yi| for x, y ∈ Zn.

A Lee code C is just a subset of Zn endowed with the Lee distance. If C
further has the structure of an additive group, i.e. C is a lattice in Zn, then
we call C a linear Lee code. Lee codes have many practical applications, for
example, constrained and partial-response channels [18], flash memory [19] and
interleaving schemes [4].

The minimum distance between any two distinct elements in C is called the
minimum distance of C. Given a Lee code of minimum distance 2r + 1, for any
x ∈ Zn, if there is always a unique c ∈ C such that dL(x, c) ≤ r, then C is called
a perfect code. This is equivalent to

Zn =
⋃̇

c∈C
(S(n, r) + c),

where S(n, r) := {(x1, · · · , xn ∈ Zn :
∑n

i=1 |xi| ≤ r} and S(n, r) + c := {v + c :
v ∈ S(n, r)}. Thus, the existence of a perfect Lee code implies a tiling of Zn by
Lee spheres of radius r.



Perfect Lee codes exist for n = 1, 2 and any r, and for n ≥ 3 and r = 1.
Golomb and Welch [6] conjectured that there are no more perfect Lee codes for
other choices of n and r. This conjecture is still far from being solved, despite
many efforts and various approaches applied on it. We refer the reader to the
recent survey [9] and the references therein.

Fig. 1. Tiling of R2 by L(2, 2)

Let L(n, r) denote the union of n-cubes centered at each point of S(n, r)
in Rn. It is not difficult to see that there is a tiling of Zn by S(n, r) if and
only if there is a tiling of Rn by L(n, r). Figure 1 shows a (lattice) tiling of R2

by L(2, 2). As the shape of L(n, r) is close to a cross-polytope when r is large
enough, one can use the cross-polytope packing density to prove the Golomb-
Welch conjecture provided that r is large enough compared with n. In fact, this
idea was first applied by Golomb and Welch themselves in [6]. There are some
other geometric approaches, including the analysis of some local configurations
of the boundary of Lee spheres in a tiling by Post [15], and the density trick by
Astola [2] and Lepistö [11].

However, it seems that the geometric approaches do not work for small r
and large n. In the past several years, algebraic approaches have been proposed
and applied on the existence of perfect linear Lee code for small r. In [10], Kim
introduced a symmetric polynomial method to study this problem for sphere
radius r = 2. This approach has been extended by Zhang and Ge [20], and
Qureshi [16] for r ≥ 3. See [9, 17, 21] for other related results. In particular,
Leung and the second author [12] succeeded in getting a complete solution to
the case with r = 2: there is no perfect linear Lee code of minimum distance 5
in Zn for n ≥ 3.

It is worth pointing out that the existence of a perfect linear Lee code of
minimum distance 2r + 1 in Zn is equivalent to an abelian Cayley graph of
degree 2n and diameter r whose number of vertices meets the so-called abelian



Cayley Moore bound ; see [5, 21]. For more results about the degree-diameter
problems in graph theory, we refer to the survey [14].

The packing radius of a Lee code C is defined to be the largest integer r′

such that for any element w ∈ Zn there exists at most one codeword c ∈ C with
dL(w, c) ≤ r′. For a Lee code C of packing radius r, let Sc denote the Lee sphere
of radius r centered at the codeword c ∈ C. The packing density of C is defined

to be lim`→∞

∑
c∈C |S(n,`)∩Sc|
|S(n,`)| if the limit exists.

It is clear that a perfect Lee code C means the packing density of Zn by
S(n, r) with centers consisting of all the elements in C is 1. As there is no
perfect linear Lee code known for r ≥ 2 and n ≥ 3, one may wonder whether the
second best is possible, which is about the existence of a lattice packing of Zn by

S(n, r) with density #S(n,r)
#S(n,r)+1 . We call such a linear Lee code almost perfect. In

Figure 2, we present a lattice packing of Z2 by S(2, 2), and its packing density

is #S(2,2)
#S(2,2)+1 = 13

14 . This example and the numbers labeled on the cubes will be

explained later in Example 1. For convenience, we abbreviate the term almost
perfect linear Lee code to APLL code.
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Fig. 2. An almost perfect Lee code in Z2

Note that an APLL code also satisfies the definition of a quasi-perfect Lee
code introduced in [1], but a quasi-perfect Lee code is not necessarily almost
perfect; see [5, 13] for constructions and other results on quasi-perfect Lee codes.

About the existence of APLL codes of minimum distance 5, one can apply the
symmetric polynomial method in [10] and the algebraic number theory approach
in [21] to derive some partial results. For n ≤ 105, one can exclude the existence
of APLL codes of minimum distance 5 for 76, 573 choices of n. For more details,
see [7].

The main result of this paper is the following one.



Theorem 1. Let n be a positive integer larger than 2. If n ≡ 0, 3, 4 (mod 6),
then there exists no almost perfect linear Lee code of minimum distance 5.

As in [12], our proof is given in the group ring Z[G] where G is of order
|S(n, 2)| + 1 = 2(n2 + n + 1). However, the situation here is different from the
one appeared in [12]. We consider a special subset T ⊆ G and show that T
splits into two disjoint subsets T0 ∈ H and fT1 ∈ fH where H is the unique
subgroup of G of index 2 and f is the unique involution in G. Then, we analyze

the elements appearing in (T
(2)
0 +T

(2)
1 )T0 and (T

(2)
0 +T

(2)
1 )T1. Unfortunately, we

cannot get any contradiction when n ≡ 1, 2, 5 (mod 6). But we conjecture that
there is no APLL code for this case when n > 2.

The rest part of this paper consists of two sections. In Section 2, we convert
the existence of an almost perfect linear Lee code of radius 2 into some conditions
in group ring. Then we prove Theorem 1 in Section 3.

2 A necessary and sufficient condition in group ring

The following result converts the existence of APLL codes into an algebraic
combinatorics problem on abelian groups. Its proof is not difficult, and more or
less the same as the proof of Theorem 6 in [8]. Hence we omit its proof here.

Lemma 1. There is an APLL code of minimum distance 2r + 1 in Zn if and
only if there is an abelian group G and a homomorphism ϕ : Zn → G such
that the restriction of ϕ to S(n, r) is injective and G \ ϕ(S(n, r)) has only one
element.

The next result translates the existence of an APLL code into a group ring
condition. The same result has been proved in [7] in the context of the existence
of abelian Moore Cayley graphs with excess one. We refer to [3, Chapter VI, §3
] for the definition and basic properties of group rings.

Lemma 2. There exists an APLL code of radius 2 in Zn if and only if there is
an abelian group G of order 2(n2 + n + 1) and an inverse-closed subset T ⊆ G
containing e with |T | = 2n+ 1 such that

T 2 = 2(G− f)− T (2) + 2ne, (1)

where e is the identity element and f is the unique element of order 2 in G.

The following two examples show that for n = 1, 2, there do exist APLL
codes of radius 2. The corresponding result of Example 1 (b) has been already
depicted in Figure 2.

Example 1. Let G be a cyclic group generated by g of order 2n2 + 2n+ 2.

(a) n = 1, |G| = 6 and T = {e, g±1}.
(b) n = 2, |G| = 14 and T = {e, g±1, g±4}.



In Figure 2, we label each element in Z2 which is mapped to ϕ(e1) = g by 1 and
those mapped to ϕ(e2) = g4 by 4. The center of every Lee sphere is labeled by
0. The holes are all labeled by 7 corresponding to the unique involution g7 in G.

Let H denote the unique subgroup of order n2+n+1 in G. Define T0 = T ∩H
and T1 = fT ∩H. Thus T = T0 + fT1. By (1),

T 2
0 + T 2

1 + 2fT0T1 = 2(G− f)− T (2)
0 − T (2)

1 + 2n · e.

The left-hand side and the right-hand side of the above equation can both be
viewed as multisets in G. Hence we may concentrate on the elements in H and
fH, respectively, to derive

T0T1 = H − e, (2)

T 2
0 + T 2

1 = 2H − T (2)
0 − T (2)

1 + 2ne. (3)

Therefore, we have proved the following result.

Lemma 3. Let T = T0 + fT1 ⊆ G with T0 and T1 ⊆ H. The subset T satisfies

that e ∈ T , T (−1) = T and (1) if and only if e ∈ T0, T
(−1)
0 = T0, T

(−1)
1 = T1,

(2) and (3) hold.

The following result is a collection of obvious necessary conditions for T0 and
T1, which will be intensively used in Section 3. We omit the proof.

Lemma 4. Suppose that T = T0 + fT1 ⊆ G satisfying e ∈ T , T (−1) = T ,
|T | = 2n+ 1, (2) and (3). Then the following statements hold.

(a) e ∈ T0, e /∈ T1;

(b) T0 ∩ T1 = ∅ and T
(2)
0 ∩ T (2)

1 = ∅;
(c) T0 ∩ (T

(2)
0 \ {e}) = T0 ∩ T (2)

1 = ∅;
(d) {ab : a 6= b, a, b ∈ T0} ∩ T (2)

0 = {e};
(e) When n is odd, |T0| = n and |T1| = n+ 1;

(f) When n is even, |T0| = n+ 1 and |T1| = n.

(g) There is no common non-identity element in T 2
0 and T 2

1 .

(h) T0 ∩ T (3)
0 = {e}.

3 Proof of the main result

In this section, we are going to prove Theorem 1 by showing the nonexistence of
inverse-closed subsets T0, T1 ⊆ H satisfying e ∈ T0, |T0|+ |T1| = 2n+ 1, (2) and
(3).

Define T̂ = T0 +T1 ∈ Z[H]. Write T̂ (2) =
∑2n

i=0 ai where a0 = e, ai ∈ T (2)
0 for

i = 0, · · · , |T0|−1 and ai ∈ T (2)
1 for i = |T0|, · · · , 2n. Let k0 = |T0| and k1 = |T1|.



By multiplying T0 and T1 on both sides of (3), respectively, and rearranging
the terms, we get

T̂ (2)T0 = (2k0 − k1)H + T1 − T 3
0 + 2nT0,

T̂ (2)T1 = (2k1 − k0)H + T0 − T 3
1 + 2nT1.

Consider the above two equations modulo 3

T̂ (2)T0 ≡ (2k0 − k1)H + T1 − T (3)
0 + 2nT0 (mod 3), (4)

T̂ (2)T1 ≡ (2k1 − k0)H + T0 − T (3)
1 + 2nT1 (mod 3). (5)

Noting that T 3
0 ≡ T

(3)
0 (mod 3) and T

(3)
0 is very close to a subset in H. In fact,

if 3 - |H|, then T
(3)
0 is a subset; for 3 | |H|, we will handle it in Lemma 6. Thus,

we will know the coefficients modulo 3 of most of the elements in the right-hand
side of the above two equations. For instance, when n ≡ 1 (mod 3) and n is odd,

the first equation becomes T̂ (2)T0 ≡ T1 − T (3)
0 + 2T0 (mod 3). As T1, T

(3)
0 and

T0 are approximately of size n, most of the elements in H appear in T̂ (2)T0 for
3k times, k = 0, 1, · · · .

Let Xi (Yi, resp.) be the subset of elements of H appearing in T̂ (2)T0 (T̂ (2)T1,
resp.) exactly i times for i = 0, 1, · · · ,M0 (M1, resp.), which means Xi’s (Yi’s,
resp.) form a partition of the group H. In particular, we define M0 and M1 such
that XM0

and YM1
are non-empty sets. Then

T̂ (2)T0 =

M0∑
i=0

iXi, T̂ (2)T1 =

M1∑
i=0

iYi.

By the above equations, we get three conditions on the value of |Xi|’s and |Yi|’s:
M0∑
i=1

i|Xi| = (2n+ 1)k0, (6)

M1∑
i=1

i|Yi| = (2n+ 1)k1, (7)

M0∑
i=0

|Xi| =
M1∑
i=0

|Yi| = n2 + n+ 1. (8)

Some extra conditions are given by the following Lemma.

Lemma 5. Let θ0 = |(T 2
0 \T

(2)
0 )∩ T̂ (4)| and θ1 = |T1∩T̂ (2)|

2 + |(T 2
1 \(T

(2)
1 ∪{e}))∩

T̂ (4)|. Then

M0∑
i=1

|Xi| =(2n+ 1)k0 − 2(k0 − 1)k0 + θ0 +
∑
s≥3

(s− 1)(s− 2)

2
|Xs|, (9)

M1∑
i=1

|Yi| =(2n+ 1)k1 − 2(k1 − 1)k1 + θ1 +
∑
s≥3

(s− 1)(s− 2)

2
|Ys|. (10)



Notice that |Xi|’s and |Yi|’s are nonnegative integers. Our main idea is to
use (6) , (7) , (8), (9) and (10) together with T̂ (2)T0 and T̂ (2)T1 (mod 3) to
determine |Xi|’s and |Yi|’s. For some cases, we will end up with a contradiction
which means there is no T0 and T1 satisfying (2) and (3), for example, see
Theorem 2; for other cases, the value of |Xi|’s and |Yi|’s together with a careful
analysis of (2) and (3) also lead to contradictions, for instance, see Theorems 4.

To prove Lemma 5, we need to prove a series of lemmas which will appear
in the full version of this paper.

In the following, we investigate (4) and (5) separately in different cases de-
pending on the value of n modulo 3. For n ≡ 1 (mod 3), we first need the
following observation.

Lemma 6. When n ≡ 1 (mod 3),

(a) there is no element in T
(3)
j appearing more than 2 times for j = 0, 1,

(b) e appears only once in T
(3)
0 , and

(c) there are 0 or 2 elements appearing twice in T
(3)
0 , and there are at most 2

elements appearing twice in T
(3)
1 .

By Lemma 4 (e) and (f), 2k0 − k1 ≡ 2k1 − k0 ≡ 0 (mod 3). Using (4), (5)
and 3 | (n− 1),

T̂ (2)T0 ≡ T1 − T (3)
0 + 2T0 (mod 3), (11)

T̂ (2)T1 ≡ T0 − T (3)
1 + 2T1 (mod 3). (12)

By Lemma 4 (b) and (h), T0 ∩ T1 = ∅ and T0 ∩ T (3)
0 = {e}. Let ∆i be the set of

elements appearing twice in T
(3)
i for i = 1, 2. By Lemma 6, |∆0|, |∆1| ≤ 2 and

there is no element appearing more than 2 times in T
(3)
i for i = 1, 2. Notice that

|T (3)
0 | = k0 − |∆0|, and |T (3)

1 | = k1 − |∆1|,

where |T (3)
i | denotes the number of distinct elements in the multiset T

(3)
i for

i = 1, 2. Depending on the parity of n, we investigate (12) and (11), respectively.

Theorem 2. For any n satisfying n odd, n ≡ 1 (mod 3) and n > 2, there is no
inverse-closed subsets T0 and T1 ⊆ H with e ∈ T0 and k0 +k1 = 2n+1 satisfying
(2) and (3).

Proof. As 2 | n, k0 = n + 1 and k1 = n. We concentrate on (12). Let u0 =

|T (3)
1 ∩ T0| and u1 = |T (3)

1 ∩ T1|. By Lemma 4, T0 ∩ T1 = ∅. Furthermore,
we separate ∆1 into three disjoint parts ∆0

1 = ∆1 ∩ T0, ∆1
1 = ∆1 ∩ T1 and

∆2
1 = ∆1 \ (T0 ∪ T1).

By comparing the coefficients of elements in (12), we get⋃
i≥0

Y3i+2 = (T1 \ T (3)
1 ) ∪̇

(
T

(3)
1 \ (T0 ∪̇ T1 ∪∆1)

)
∪̇ ∆0

1.



Notice that |T (3)
1 | = k1 − |∆1|. It follows that∑

i≥0

|Y3i+2| = (n− u1) + (n− |∆1| − (u0 + u1)− |∆2
1|) + |∆0

1|.

Similarly, ⋃
i≥0

Y3i+1 = (T0 \ T (3)
1 ) ∪̇ ∆2

1 ∪̇ (T1 ∩ T (3)
1 \∆1

1).

Thus ∑
i≥0

|Y3i+1| = (n+ 1− u0) + |∆2
1|+ u1 − |∆1

1|.

To summarize, we have proved∑
i≥0

|Y3i+2| = 2n−2u1−u0−2|∆2
1|−|∆1

1|,
∑
i≥0

|Y3i+1| = n+1−u0+u1+|∆2
1|−|∆1

1|,

(13)
Now (10) becomes

M1∑
i=1

|Yi| = (2n+ 1)n− 2(n− 1)n+ θ1 +
∑
s≥3

(s− 1)(s− 2)

2
|Ys|

= 3n+ θ1 +
∑
s≥3

(s− 1)(s− 2)

2
|Ys|. (14)

Plugging the two equations in (13) into it to replace 3n, we get

M1∑
i=1

|Yi| =
∑
i≥0

|Y3i+1|+
∑
i≥0

|Y3i+2|+ 2u0 + u1 + |∆2
1|+ 2|∆1

1| − 1

+ θ1 +
∑
s≥3

(s− 1)(s− 2)

2
|Ys|,

which implies

1 =2u0 + u1 + |∆2
1|+ 2|∆1

1|+ θ1

+
∑

s>3,3|s

(
(s− 1)(s− 2)

2
− 1

)
|Ys|+

∑
s≥3,3-s

(
(s− 1)(s− 2)

2

)
|Ys|. (15)

As |Yi|, u0, u1,|∆2
1|, |∆1

1| and θ are all nonnegative integers, (15) implies that
u0 = 0 and each |Yi| = 0 for i ≥ 4. Recall that u1 is the cardinality of the

inverse-closed subset T
(3)
1 ∩T1 which does not contain e ∈ H. Hence u1 must be

even. Similarly, |∆1
1| and |∆2

1| are also even. Thus, by (15),

u1 = |∆1
1| = |∆2

1| = 0,



and θ1 = 1. Plugging them into (13), we get

|Y1| = n+ 1, |Y2| = 2n.

By (7),

3|Y3| = (2n+ 1)n− (n+ 1)− 4n = 2n2 − 4n− 1.

As Yi’s form a partition of the group H and each Yi is inverse-closde, there exists
only one of them of odd size. However, now |Y1| and |Y3| are both odd, which is
impossible.

Therefore, we have excluded the existence of |Yi|’s which means there do not
exist inverse-closed subsets T0 and T1 ⊆ H with e ∈ T0 and k0 + k1 = 2n + 1
satisfying (2) and (3). ut

For n odd and n ≡ 1 (mod 3), we cannot derive any contradiction by the
value of |Xi|’s and |Yi|’s. Instead, we can completely determine the value of |Xi|’s
and we omit its proof.

Theorem 3. For n ≡ 1 (mod 6), if there exist inverse-closed subsets T0 and
T1 ⊆ H with e ∈ T0 and k0 + k1 = 2n+ 1 satisfying (2) and (3), then

|X0| =
1

3
(n− 1)2, |X1| = n+ 2, |X2| = 2n− 2,

|X3| =
2

3
(n− 1)2, |Xi| = 0, for i > 3.

Furthermore, T1 ∩ T (3)
0 = ∅ and ∆0 ⊆ T1.

The proof for n ≡ 0 (mod 3) needs different approach and it is more compli-
cated. We will provide their detailed proof (11 pages) in the full version of this
paper.

Theorem 4. For positive integer n satisfying 3 | n, there is no inverse-closed
subsets T0 and T1 ⊆ H with e ∈ T0 and |T0| + |T1| = 2n + 1 satisfying (2) and
(3).

The main result, i.e. Theorem 1 is a simple combination of Theorems 2 and
4. For n ≡ 2 (mod 3), a similar analysis of (4) and (5) can only tell us the ranges
of the value of |X1| and |X4| which leads to no contradiction.
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