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Abstract. Cryptographic algorithms rely on the secrecy of their corre-
sponding keys. On embedded systems with standard CMOS chips, where
secure permanent memory such as flash is not available as a key stor-
age, the secret key can be derived from Physical Unclonable Functions
(PUFs) that make use of minuscule manufacturing variations of, for in-
stance, SRAM cells. Since PUFs are affected by environmental changes,
the reliable reproduction of the PUF key requires error correction. For
silicon PUFs with binary output, errors occur in the form of bitflips
within the PUF response. Modeling the channel as a Binary Symmetric
Channel (BSC) with fixed crossover probability p is only a first-order
approximation of the real behavior of the PUF response. We propose a
more realistic channel model, referred to as the Varying Binary Sym-
metric Channel (VBSC), which takes into account that the reliability of
different PUF response bits may not be equal. We investigate its channel
capacity for various scenarios which differ in the channel state informa-
tion (CSI) present at encoder and decoder. We compare the capacity
results for the VBSC for the different CSI cases with reference to the
distribution of the bitflip probability according to a work by Maes et al.
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1 Introduction

Secure keys are the foundation for secure cryptographic operations. As a wide
range of integrated circuits does not have access to secure key storage, Physical
Unclonable Functions (PUFs) evaluate physical properties of a circuit to derive
a unique fingerprint and thus generate a device-specific cryptographic key. A
PUF can be seen as the fingerprint of a physical object [7, 9], emanated from
minuscule manufacturing variations that vary from object to object. This phys-
ical fingerprint can, hence, contribute to a hardware root of trust for security
applications, such as authentication or identification of a device, and also the
generation of a key for cryptographic primitives.

SRAM is widely available on embedded devices and a popular PUF primi-
tive [6]. Upon power-up, the state of SRAM cells is not deterministically defined,
however they will mostly start up in the same state. Due to manufacturing varia-
tions, the state of a certain SRAM cell will either be “0” or “1”. Multiple SRAM
bits can therefore be grouped into a (randomly distributed) PUF-response. As
characterized in [11] and later refined in [10], SRAM PUF cells vary significantly
in their reliability. This reliability can be estimated with multiple measurements.
In contrast, other PUFs such as the Ring-Oscillator PUF directly output analog
or finely quantized discrete outputs, such that reliability information is directly
available for each measurement. This also allows to estimate the reliability of a
specific measurement as channel state information during decoding.

From these random SRAM bits, a key can be generated, which is exemplarily
shown in Fig. 1 for the code-offset fuzzy extractor [4]. The PUF key is generated
(once) during the manufacturing process of the device, which is referred to as en-
rollment. After that, the PUF response is repeatedly read out whenever needed,
such that the key can be reproduced. However, since the PUF is subject to noise
and also environmental effects such as temperature changes, certain SRAM bits
can flip and impact the reliability of the key. Hence, an error correction algorithm
was included into the key generation scheme.

Fig. 1 shows that the key generation phase and the reproduction phase con-
tain encoding and decoding steps. During the reproduction phase, the PUF will
be read out again and the PUF response will deviate from the original one in the
enrollment phase due to changes in environmental conditions. This corresponds
to transmitting the PUF response over a noisy channel, which in case of SRAM
cells can be described by a Binary Symmetric Channel (BSC).

The reliability of the power-up state of an SRAM cell heavily depends on
the mismatch between its transistors so that a BSC model with constant error
probability discards parts of the information. Experimental work compared in [8]
has shown that fuzzy extractors benefit from reliability information, but still lack
work on fundamental limits.

In this paper, we extend the BSC model as used, e.g. in [2], by taking into ac-
count that the crossover probabilities may vary from cell to cell. This leads to the
channel model discussed in Section 3 which we then analyze using information-
theoretic methods in Section 4. We distinguish whether CSI is present at encoder
and/or decoder. Furthermore within this section we show a capacity-achieving



Analysis of Communication Channels related to PUFs 3

Encoder

⊕ ⊕ ⊕Decoder

random R

(from TRNG)
codeword C

PUF-response X

(secret key)

W = C ⊕ X

helper data

C̃ Ĉ
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Fig. 1. Simplified schematic of a key generation scheme based on PUFs.

code construction using polar codes for CSI at encoder and decoder. Section 5
shows the results of our analysis when the probability density function (pdf) of
the crossover probabilities is specified according to [10]. Section 6 concludes the
paper.

2 Notation

We denote vectors by bold lowercase letters, e.g. v, and its i-th component by
vi. We denote random variables by uppercase letters, e.g. X denotes a random
variable and we denote its probability mass function by PX if the random variable
is discrete and its probability density function by fX(x) in case the random
variable X is continuous. We denote the expected value of a random variable
X by E

[
X
]
. In this work logarithms are to the base 2 unless otherwise stated.

We denote the entropy of a discrete random variable by H(X) and the mutual
information between two random variables by I(X;Y ). We denote the binary
entropy function by H2(p) := −p log p− (1− p) log(1− p).

3 Channel Model

In Section 1, it has been motivated why reading out a PUF response corre-
sponds to data transmission over a noisy channel. More specifically the channel
corresponds to a binary symmetric channel (BSC) that changes its crossover
probability p before each channel use according to a pdf fP (p). In the following,
it is assumed that fP (p) is known to the transmitter and to the receiver. The pdf
has to be estimated by the manufacturer because it may be highly dependent
on the manufacturing process.

For a block transmission with block length n, we denote the crossover prob-
ability for the i-th channel use by pi. The pi can be given to the encoder and
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Fig. 2. Varying Binary Symmetric Channel (VBSC) for the i-th channel use without
knowledge of pi at encoder and decoder.

the decoder potentially resulting in larger capacities for the varying binary sym-
metric channel (VBSC). There are several cases to be distinguished. The pi can
be given to the encoder, the decoder, to both or to none of them. This is re-
flected in Fig. 2 by using dashed lines for the transmission of the pi to encoder
and decoder. Furthermore, we distinguish causal and non-causal channel state
information at the encoder.

Definition 1. The channel state information (CSI) at the encoder is causal
if the encoder only has knowledge about pi := p1, . . . , pi to determine the i-th
codeword symbol ci, i.e., ci := ci(m, pi).

Definition 2. The channel state information (CSI) at the encoder is non-causal
if the encoder has full knowledge about pn := p1, . . . , pn during the entire encoding
process, i.e., ci := ci(m, pn) for all i.

Notice that it is not necessary to distinguish causal and non-causal CSI at the
decoder. For the causal case the decoder can simply wait until the entire block
yn and the complete CSI pn has been received before it starts the decoding
procedure. Therefore, causal CSI is equivalent to non-causal CSI at the decoder.

On the contrary, causal and non-causal CSI at the encoder have to be dis-
tinguished in general.

4 Information Theoretic Analysis of the channel

In this section, we aim to obtain the capacity for the VBSC. As introduced in
Section 3 we distinguish several cases according to the availability of CSI at
the encoder and decoder. We present the capacity results for all cases except
non-causal CSI only at the encoder. The proofs in the extended version of this
paper [12] or within this section are frequently only shown for a continuous
random variable P describing the channel state. Practically, it may be more



Analysis of Communication Channels related to PUFs 5

convenient to quantize the random variable P since its value has to be estimated.
The proofs for a discrete random variable P describing the channel state follow
analogously.

We state the following lemma which is standard textbook knowledge (e.g. [3])
as a reminder for the reader.

Lemma 1 (BSC Capacity, [3]). The capacity of the binary symmetric channel
(BSC) with crossover probability p is given by

CBSC(p) = 1−H2(p)

4.1 No Channel State Information at Encoder and Decoder

Drawing the pi randomly for each channel use can be interpreted as part of the
channel’s noise. We denote the input sequence of the channel by X1, . . . , Xn and
the corresponding outputs by Y1, . . . , Yn. Since the VBSC is a discrete memory-
less channel (DMC), it holds that

C = max
PX

I(X;Y ) .

Theorem 1. Let fP (p) denote the pdf of the random variable P from which the
pi are drawn for a VBSC. Let fP (p) be known at encoder and decoder and let the
realizations of the pi be unknown at the encoder and decoder. Then, the capacity
of the VBSC is

CV BSC = CBSC

(
E
[
P
])

(1)

Proof. See extended version [12]. ut

4.2 Channel State Information at Encoder and Decoder

Theorem 2 ([5, Chapter 7.4]). Let a discrete memoryless channel (DMC)
with state space P := {1, . . . , |P|} be given and let the state for each channel use
be sampled i.i.d. from a probability mass function (pmf) PP (p). The capacity of
this channel for CSI at encoder and decoder is given by

CV BSC−ED = max
PX|P

I(X;Y |P ) .

Using Theorem 2 we determine the capacity of the VBSC for finite channel
state space P.

Theorem 3. For the capacity of the VBSC with CSI at encoder and decoder
and finite channel state space P it holds that

CV BSC−ED = E
[
CBSC(P )

]
.

Proof. See extended version [12]. ut
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Now, we show that for continuous pdf fP (p) describing the channel state we can
approach the rate

R̃ := max
PX|P

I(X;Y |P ) = 1−
∫
supp(fP )

H2(p)fP (p) dp = E
[
CBSC(P )

]
arbitrarily close.

Corollary 1. Let fP (p) denote the pdf of a random variable P from which the
crossover probability of the VBSC is drawn. Furthermore, let fP (p) be differ-
entiable with a continuous derivative in (0, 1). If CSI is known at encoder and
decoder the capacity of the channel is arbitrarily close to R̃.

Proof. See extended version [12]. ut

Theorem 1 in [11] states that publication of the CSI does on average not
leak information about the expected response of the SRAM cell. Therefore, the
requirement of having CSI at the decoder does not compromise the security of
the SRAM-PUF and the channel model with CSI at the encoder and decoder is
relevant in practice.
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Fig. 3. The probability density function (pdf) of the error for the SRAM cell. The pdf
is computed as shown in [10] with parameters λ1 = 0.1213 and λ2 = 0.021.

Achievability of Capacity using Polar Codes The proof of Corollary 1
presented in the extended version [12] also shows that by constructing a finite
number of polar codes, it is possible to achieve the capacity of the VBSC with
CSI at encoder and decoder. Basically for each of the intervals in Fig. 3, it is
possible to construct a polar code for a BSC with crossover probability equal
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to the value of the minimal CBSC(p) (largest p if the interval is in [0, 1/2] and
smallest p if the interval is in [1/2, 1]). Polar codes are capacity achieving for
BSCs [1]. Since every interval occurs with strictly positive probability, on average
each of them occurs linearly in the block length n. Using the respective polar
code for each interval achieves the capacity of the channel arbitrarily close.

4.3 Channel State Information only at the Decoder

As already mentioned in Section 3, it makes no difference whether channel state
information is given to the decoder in a causal or non-causal manner.

Theorem 4. The capacity of the VBSC with channel state information at the
decoder is equal to

CV BSC−D = E [CBSC(P )]

Proof. See extended version [12]. ut

Notice that CSI at the encoder (causally or non-causally) has no effect on the
capacity of the VBSC as long as CSI is given to the decoder. This effect occurs
because the input distribution has no effect on H(Y |X,P ) and the uniform
distribution maximizes H(Y |P ) independently of P .

4.4 Causal Channel State Information at the Encoder

As discussed in Subsection 4.2, publishing CSI does not compromise the security
of the PUF. However, CSI only at the encoder may still be relevant because
including the CSI into the helper data of the PUF increases the channel capacity
at the expense of also increasing the helper data size. In this subsection, we
consider causal channel state information at the encoder.

We will show the capacity of the VBSC with causal CSI at the encoder.
Furthermore, we will show that the capacity is higher (except for some special
cases) than for the case without CSI at encoder and decoder. This statement is
non-trivial due to the symmetry of the channel.

Theorem 5. Let fP (p) denote the pdf from which the crossover probability is
sampled i.i.d. for each channel use. Then the capacity of the VBSC with causal
CSI is equal to

CV BSC−E = 1−H2

(∫ 0.5

0

fP (p)(1− p) dp +

∫ 1

0.5

fP (p)p dp

)
. (2)

In order to prove this theorem, we make use of a generic result on the capacity
of channels with causal CSI at the encoder which is stated in [5].

Theorem 6. The capacity of a DMC with CSI causally available at the encoder
can be computed by

CCSI−E = max
PU ,x(U,P )

I(U ;Y ) , (3)

where for the alphabet size |U| of the auxiliary variable U , it holds that
|U| ≤ min{(|X | − 1)|P|+ 1, |Y|}.
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Fig. 4. Analysis of the VBSC with causal CSI at the encoder according to Theorem 6

In the theorem above, the auxiliary variable U can be interpreted as the
output of an encoder which encodes an arbitrary message m independently of
the channel state. U functions as the input to a mapping device that maps the
input according to the channel state onto the channel’s input alphabet. This
resulting X is then transmitted over the channel resulting in the channel output
Y . The transmission of the i-th symbol within the block is illustrated in Fig. 4.
The proof of Theorem 5 is based on the following two lemmas.

Lemma 2. The mapper

x(u, p) =

{
u for p ≤ 0.5

u else
(4)

minimizes the conditional entropy H(Y |U). Furthermore, H(Y |U) is indepen-
dent of PU and it holds

H(Y |U) = H2

(∫ 1

0

fP (p) max{p, 1− p} dp
)

. (5)

Proof. See extended version [12]. ut

Lemma 3. If the mapper is chosen as specified in Lemma 2, choosing PU to be
the uniform distribution leads to a uniform output distribution PY .

Proof. See extended version [12]. ut

Finally, we are ready to determine the capacity of the VBSC with causal CSI at
the encoder.

Proof (Theorem 5). Expanding the mutual information in Theorem 6 we have

CV BSC−E = max
PU ,x(U,P )

I(U ;Y ) = max
PU ,x(U,P )

H(Y )−H(Y |U) .

By Lemma 2 we have that the conditional entropy H(Y |U) is minimized in-
dependent of the choice of PU for the mapper specified in (4). Furthermore,
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according to Lemma 3, a uniform PU leads to a uniform PY and consequently
H(Y ) = 1. Therefore, the choice we made for PU and x(U,P ) maximizes I(U ;Y )
and the channel capacity is obtained. Combining the previous results, we get

CV BSC−E = 1−H2

(∫ 0.5

0

fP (p)(1− p) dp +

∫ 1

0.5

fP (p)p dp

)
completing the proof. ut

It holds that CV BSC ≤ CV BSC−E with equality if and only if fP (p) = 0, ∀p ∈
(1/2, 1] almost everywhere. For an elaborate discussion on this statement see the
extended version of this paper [12].

4.5 Non-causal Channel State Information at the Encoder

Proposition 1. For the capacity of the VBSC with non-causal CSI at the en-
coder denoted as CV BSC−E/nc it holds that

CV BSC−E ≤ CV BSC−E/nc ≤ CV BSC−ED

Proof. Both bounds are trivial. It is obvious that non-causal CSI at the encoder
can only increase capacity compared to the case with causal CSI and clearly CSI
at encoder and decoder can obviously only increase the capacity compared to
the case for non-causal CSI at the encoder only. ut

5 Results for a Fixed Crossover Probability Distribution

In this section, we take the model for the error probabilities introduced in [10]
and compute the capacities for CSI at encoder and decoder as well as for the
case without CSI at encoder and decoder.

In order to do so, we use Theorems 1, 3, 4 and 5 as well as Corollary 1. This
results in the values presented in Table 1. We observe that CSI at encoder and
decoder increases the capacity of the VBSC for the proposed crossover proba-
bility distribution by 0.179 bits per channel use (or by 25%) compared to the
case without CSI at encoder and decoder. Table 1 furthermore shows that causal
CSI at the encoder increases the channel capacity by 0.0688 bits per channel use
again compared to the case without CSI.

Table 1. Numerical computation of the capacities for the pdf fP (p) from [10] which
is depicted in Fig. 3.

CV BSC CV BSC−E CV BSC−D CV BSC−ED

0.6961 bpcu 0.7649 bpcu 0.8751 bpcu 0.8751 bpcu
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6 Conclusion

In this work, we have introduced the Varying Binary Symmetric Channel (VBSC)
to model the difference of PUF responses between the key enrollment and the
key reproduction phase. We have derived capacity results depending on the avail-
able channel state information (CSI) at encoder and decoder. To exemplify our
results, we computed the channel capacities for the crossover probability model
proposed in [10]. The results show that the capacity of the corresponding VBSC
increases by about 25% if encoder and decoder have CSI compared to the case
when both have no knowledge about the channel state. Furthermore, we argued
that polar codes can be used to achieve capacity if CSI is available at encoder
and decoder.
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