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Abstract. The binary k-dimensional simplex code is known to be a
2k−1-batch code and is conjectured to be a 2k−1-functional batch code.
Here, we offer a simple, constructive proof of a result that is “in between”
these two properties. Our approach is to relate the required property to
an additive problem in finite abelian groups.
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1 Introduction

A t-batch code is a method to store a data record in encoded form on multi-
ple servers in such a way that the bit-values in any batch of t positions from
the record can be retrieved by decoding the bit-values in t disjoint groups of
positions.

Batch codes were initially introduced in [2] as a method to improve load-
balancing in distributed data storage systems. Later, so-called switch codes (a
special case of batch codes) were proposed in [6] as a method to increase the
throughput rate in network switches.

In [4, 5], it was shown that the well-known binary simplex code, a code of
length 2k−1, dimension k, and minimum distance 2k−1 (k ≥ 1 integer) is a 2k−1-
batch code. The proof of that result is somewhat cumbersome, and the algorithm
resulting from the proof requires to store and use a database containing all the
solutions for the cases where k ≤ 7. More recently, in [9, 10] the authors conjec-
ture that the k-dimensional simplex code is even a 2k−1-functional batch code.
(For precise definitions of this and other used notions, we refer to Section 2.)

In this paper, we give a simple, algorithmic proof of a result that falls halfway
between the known result for the simplex code in [4, 5] and the conjecture in [9,
10]. Our approach is to relate the required properties of the simplex code to an
additive problem in finite abelian groups.

The contents of this paper are as follows. In Section 2, we provide precise
definitions of all the notions mentioned above, together with precise statements
of some known results and conjectures. In our approach, we deal with certain
reformulations of these statements, as derived in Section 3. In Section 4 we



describe a variation of an algorithm in abelian groups first discovered by Marshall
Hall, Jr., with slightly simpler proofs than those given in [1], that we then use
to demonstrate our main result. We end with some conclusions in Section 5.

2 Preliminaries

All codes in this paper are binary and linear. We use F2 to denote the finite field
of two elements 0,1, with addition and multiplication modulo 2, and we write
Fk
2 for the vector space of dimension k over F2. Thus Fk

2 consists of all binary
vectors of length k. Vectors and matrices will be denoted by boldface italic
symbols. The ith unit vector ei is the binary vector that has a one in position i
and a zero in all other positions. We will write Ek to denote the set of the k unit
vectors of length k. For convenience, we commonly number the positions with
the integers 0, 1, . . . , k − 1. The support of a vector v ∈ Fk

2 , written as supp(v),
is the collection of positions where v has a 1, and the (Hamming) weight w(v)
of v is the size of supp(v).

Definition 1 We say that a binary k×n matrix G can serve a request sequence
r1, . . . , rt of (not necessarily distinct) nonzero vectors in Fk

2 if we can find pair-
wise disjoint subsets I1, . . . , It of the columns of G such that for j = 1, . . . , t,
the columns in Ij sum to rj .

We will be interested in various properties of such matrices defined in terms of
the particular request sequences that they can serve.

Definition 2 The binary k × n matrix G (as well as the binary linear code
generated by G) is (i) a t-PIR code, (ii) a t-batch code, (iii) a t-odd batch code,
or (iv) a t-functional batch code if G can serve any request sequence of length t
consisting of (i) the t-fold repetition of a unit vector in Ek, (ii) unit vectors
in Ek only, (iii) vectors in Fk

2 of odd weight only, or (iv) nonzero vectors in Fk
2 ,

respectively.

The notions of t-PIR code and t-batch code are well known (but note that some
authors employ a more general definition and refer to these codes as multiset
primitive), and together with t-functional batch codes are defined, for example,
in [9, 10]. For a recent overview of these and related types of codes, see [3]. The
notion of t-odd batch code is new and is introduced here for convenience.

The (binary) simplex code of length n = 2k − 1 has a k × (2k − 1) gener-
ator matrix Gk whose columns are the distinct nonzero vectors in Fk

2 . In [4]
(see also [5]) it was shown that Gk is a 2k−1-batch code, but the proof is some-
what cumbersome. Recently [9, 10], it was conjectured that Gk is even a 2k−1-
functional batch code, and it was shown that Gk is a t-functional batch code for
t = 2k−2 +2k−4 + b2k/2/

√
24c, again with a rather involved proof. After comple-

tion of this paper, we learned that this result was further improved in [7] and [8],
where it was shown that Gk is a t-functional batch code for t = b(2/3) · 2k−1c
and t = b(5/6) · 2k−1c − k, respectively.

In this paper, we will provide a simple algorithmic proof that Gk is a 2k−1-
odd batch code. In fact, we will prove slightly more.



Theorem 3 For every integer k ≥ 1, the binary simplex code of length n =
2k−1 and dimension k, with generator matrix Gk as above, is a 2k−1-odd batch
code. In addition, every sequence of 2k−1 odd-weight vectors from Fk

2 can be
served with column subsets of size at most two.

Note that since every unit vector has odd weight (in fact, a weight equal to 1),
Theorem 3 implies that the k-dimensional simplex code generated by Gk is in
fact a 2k−1-batch code, a fact that was first proved in [4, 5].

In [9, 10], it was conjectured that the simplex code of length 2k−1 is in fact a
2k−1-functional batch code. We believe that even a slightly stronger result may
be true.

Conjecture 4 For every integer k ≥ 1, the binary simplex code of length n =
2k − 1 and dimension k, with generator matrix Gk as above, can serve every
sequence of 2k−1 vectors from Fk

2 with column subsets of size at most two.

Now a request r 6= 0 is served by a set of columns I = {x,y} of Gk, where we
may assume x 6= 0, and possibly y = 0, precisely when there are vectors x,y
with x 6= 0 such that x + r = y. So it is easily seen that the above conjecture
is in fact equivalent to the following.

Conjecture 5 Let k ≥ 1 be an integer. For every sequence of nonzero vectors
r1, . . . , r2k−1 in Fk

2 , there are pairwise distinct nonzero vectors x1, . . . ,x2k−1

in Fk
2 such that the nonzero vectors among y1 = x1 + r1, . . . ,y2k−1 = x2k−1 +

r2k−1 are pairwise distinct and distinct from x1, . . . ,x2k−1 .

3 A reformulation

We will in fact prove the following slight generalization of Theorem 3.

Theorem 6 Let k ≥ 1 be an integer, and let H be a (k−1)-dimensional subspace
of Fk

2 . The binary simplex code of length n = 2k − 1 and dimension k, with
generator matrix Gk as above, can serve every sequence of 2k−1 vectors from
the complement Fk

2 \H of H with column subsets of size at most two.

In fact, as one of the referees remarked, Theorem 3 and Theorem 6 can easily
seen to be equivalent, by applying a suitable invertible linear transformation to
the request sequence. Below, the equivalence will be obtained in another way.

For later use, we now derive several equivalent formulations of Theorem 6.
Note that if I = {x,y} with x + y = r and r ∈ Fk

2 \ H, then without loss of
generality we may assume that x ∈ Fk

2 \H (hence nonzero) and y ∈ H. So it is
easily seen that Theorem 6 is in fact equivalent to the following.

Theorem 7 Let k ≥ 1 be an integer, and let H be a (k−1)-dimensional subspace
of Fk

2 . For every sequence of vectors r1, . . . , r2k−1 in Fk
2 \H, there are pairwise

distinct vectors x1, . . . ,x2k−1 in Fk
2 \H such that the nonzero vectors among the

vectors x1 + r1, . . . ,x2k−1 + r2k−1 in H are also pairwise distinct.



Of special interest is the case where H and Fk
2 \ H are the collection of even

and odd weight vectors in Fk
2 , respectively. Note that for this case, Theorem 6

reduces to Theorem 3.

We will now show the equivalence of Theorem 7 and the following.

Theorem 8 Let k ≥ 1 be an integer. Given any sequence r1, . . . , r2k in Fk
2 ,

there exists a numbering x1, . . . ,x2k of the vectors in Fk
2 such that the nonzero

vectors in the sequence x1 + r1, . . . ,x2k + r2k are pairwise distinct.

To show this equivalence, we need some preparation. Let H be a (k − 1)-
dimensional subspace of Fk

2 . Then H is of the form

H = u⊥ := {h ∈ Fk
2 | h1u1 + · · ·+ hkuk = 0}

for some u = (u1, . . . , uk) ∈ Fk
2 \{0}. Now H is a subgroup of (Fk

2 ,+) isomorphic
to (Fk−1

2 ,+). Indeed, if uj 6= 0, then it is easily verified that ϕ : H → Fk−1
2

defined by ϕ(h) = (h1, . . . , hj−1, hj+1, . . . , hk) is an isomorphism. Fix some a ∈
Fk
2 \H, and extend ϕ to a linear map ϕ : Fk

2 → Fk−1
2 by defining ϕ(a+h) = ϕ(h)

for h ∈ H. Note that ϕ also sets up a one-to-one correspondence between Fk
2 \H

and Fk−1
2 .

Now let k ≥ 2 be an integer. First, suppose Theorem 8 holds for k−1, let H be
a (k−1)-dimensional subspace of Fk

2 , and let r1, . . . , r2k−1 be a sequence in Fk
2\H.

Let ϕ : Fk
2 → Fk−1

2 be a linear map, 1-1 on both H and Fk
2 \H, constructed as

discussed above. Put r′i = ϕ(ri) (i = 1, . . . , 2k−1). Applying Theorem 8 for k−1,
we conclude that there is a numbering x′1, . . . ,x

′
2k−1 of the vectors in Fk−1

2 such
that the nonzero vectors among y′1 = x′1 + r′1, . . . ,y

′
2k−1 = x′2k−1 + r′2k−1 are

pairwise distinct. Let xi ∈ Fk
2\H, ri ∈ Fk

2\H, and ȳi ∈ H (i = 1, . . . , 2k−1) be the
unique vectors such that ϕ(xi) = x′i, ϕ(ri) = r′i, and ϕ(yi) = y′i, respectively.
By the linearity of ϕ, we have that xi + ri = yi for all i; moreover, since ϕ is
one-to-one on H and on Fk

2 \ H, with yi = 0 if and only if ϕ(yi) = y′i = 0,
the xi are pairwise distinct and the nonzero yi are also pairwise distinct. So we
conclude that Theorem 7 holds for k.

Conversely, suppose that the statement in Theorem 7 holds for some hyper-
plane H in Fk

2 (for example, with H the collection of even-weight vectors in Fk
2),

and let r′1, . . . , r
′
2k−1 be in Fk−1

2 . Let r1, . . . , r2k−1 be the unique vectors in Fk
2 \H

for which ϕ(ri) = r′i for all i, where ϕ is as defined in the beginning of the proof.
We conclude that there are pairwise distinct vectors x1, . . . ,x2k−1 in Fk

2 \H such
that the nonzero vectors among y1 = x1 + r1, . . . ,y2k−1 = x2k−1 + r2k−1 are
also pairwise distinct. Now let x′j = ϕ(xj) and y′j = ϕ(yj) for all j. By linearity
of ϕ, we have x′j + r′j = y′j for all j. Moreover, since ϕ is one-to-one both on H

and on Fk
2 \H, the x′j are pairwise distinct, hence they form a numbering of the

vectors in Fk−1
2 , and the nonzero y′j are also pairwise distinct. So we conclude

that Theorem 8 holds for k − 1. We have proved the following.

Theorem 9 For every integer k ≥ 2, Theorem 6, Theorem 7, and Theorem 3
are all equivalent to Theorem 8 (with k replaced by k − 1).



4 A servicing algorithm

We will now describe an algorithm to solve the numbering problem inherent
in Theorem 8, in the more general context of finite abelian groups. We first
introduce some terminology.

Definition 10 Let (G,+) be a finite abelian group. A service for a given se-
quence r1, . . . , rm in G is a collection of pairwise distinct x1, . . . , xm ∈ G such
that the m elements y1 = x1 + r1, . . . , ym = xm + rm are also pairwise distinct
in G.

We will often think of such a service as a collection of ordered triples

(x1, y1, r1), . . . , (xm, ym, rm)

with x1, . . . , xm pairwise distinct in G, y1, . . . , ym pairwise distinct in G, and
xi + ri = yi for i = 1, . . . ,m. The next result is crucial for our approach.

Theorem 11 Let (G,+) be a finite abelian group. Given a service x1, . . . , xm

for the sequence r1, . . . , rm in G with 0 ≤ m ≤ |G| − 2, and some additional
element r0 ∈ G, we can find some x ∈ G distinct from x1, . . . , xm such that
some permutation of x, x1, . . . , xm is a service for r0, r1, . . . , rm.

Proof. We give a constructive proof of this theorem by describing an algorithm
that extends a given service consisting of the triples (x1, y1, r1), . . . , (xm, ym, rm)
in G of length at most |G| − 2 as in the theorem, so with xj + rj = yj for j =
1, . . . ,m. To this end, let y−1, y0 be two distinct elements outside {y1, . . . , ym}
(which is possible by our assumption that m ≤ |G| − 2), define x0 = y0 − r0,
and set c = x0 + y−1. (Note that we may assume that x0 ∈ {x1, . . . , xm} since
otherwise we could extend the service with the new triple (x0, y0, r0); however,
we will not use this information below.)

Assume that after t steps of our algorithm (t = 0, 1, . . .), we have found
t triples (x1, y1, r1), . . . , (xt, yt, rt) (after renumbering triples if necessary) from
the given service such that the relations xj + rj−1 = yj−2 hold for j = 1, . . . , t,
and in addition,

xj + yj−1 = c (1)

holds for j = 0, . . . , t, see Figure 1.

y−1 y0 y1

x0 x1 x2

r0

r0

r1

r1

· · ·

· · ·

yt−2 yt−1 yt

xt−1 xt x

rt−1

rt−1

rt

rt

Fig. 1. The extension algorithm



Note that the case t = 0 describes the initial situation where we have no triples
yet, no relations, and where x0 + y−1 = c by definition of c.

Then in step t + 1, to extend the list of triples from the given service, we
proceed as follows. Define x = yt−1 − rt. Note that from the “crossing edges”,
we obtain the relation rt = yt − xt = yt−1 − x, hence

x + yt = xt + yt−1 = c (2)

by our assumptions. Depending on where x is situated, we now distinguish several
cases.
Case 1: x /∈ {x1, . . . , xm}. Then the t new triples (x1, y−1, r0), . . . , (xt, yt−2, rt−1),
the triple (x, yt−1, rt), and the m−t old triples (xt+1, yt+1, rt+1), . . . , (xm, ym, rm)
together constitute a service for r0, r1, . . . , rm, and we are done.
Case 2: x ∈ {xt+1, . . . , xm}. Then after renumbering triples if necessary, we may
assume that x = xt+1, where xt+1 + rt+1 = yt+1. By (2), we have xt+1 + yt = c,
and we have extended the configuration in Figure 1 from t to t + 1 triples.
Case 3: x ∈ {x1, . . . , xt}. We will show that this case cannot occur. Indeed,
suppose that x = xj with 1 ≤ j ≤ t. From (1) and (2), we have that xj + yj−1 =
c = xj+yt, hence yt = yj−1 for some j = 1, . . . , t, contradicting our assumptions.

Since in any configuration, t ≤ m must hold, the algorithm will eventually
end in case 1, and thus will produce an extended service.

Theorem 11 has an interesting consequence.

Theorem 12 Let (G,+) be a finite abelian group of size n and let r1, . . . , rn
be a sequence in G. Then there is a numbering x1, . . . , xn of the elements of G
such that x1 + r1, . . . , xn + rn form a permutation of the elements of G if and
only if r1 + · · ·+ rn = 0.

Proof. If (xi, ri, yi) (i = 1, . . . , n) is a service for r, then the xi and the yi are
both a permutation of G, so if xi+ri = yi for all i, then

∑
ri =

∑
yi−

∑
xi = 0.

So the condition on the ri is necessary. Conversely, suppose that
∑

ri = 0. By
Theorem 11, we can construct a service (x1, r1, y1), . . . , (xn−1, rn−1, yn−1) for
r1, . . . , rn−1. Let g denote the sum of all the elements of G. If xn and yn are the
elements in G that do not occur among xi and yi (i = 1, . . . , n−1), respectively,
then xn = g −

∑
i 6=n xi, yn = g −

∑
i 6=n yi and rn = −

∑
i 6=n ri, and since

xi + ri = yi for i = 1, . . . , n− 1, we conclude that in addition xn + rn = yn.

This theorem (with a slightly different proof, but employing essentially the same
algorithm) was first stated in [1]. We can also employ Theorem 11 to prove
Theorem 8.

Proof of Theorem 8: Given a sequence r1, . . . , r2k in Fk
2 , we can use Theo-

rem 11 to construct pairwise distinct vectors x1, . . . ,x2k−1 ∈ Fk
2 such that the

vectors y1 = x1 + r1, . . . ,y2k−1 = x2k−1 + r2k−1 are also pairwise distinct.
Let x2k denote the vector in Fk

2 such that {x1, . . . ,x2k} = Fk
2 . For every vector

a ∈ Fk
2 , the triples (xi + a,yi + a, ri) for i = 1, . . . , 2k − 1 again form a service

for r1, . . . , r2k−1, so by choosing a = x2k +r2k and replacing xi and yi by xi+a



and yi+a, we may assume without loss of generality that x2k = r2k . Now define
y2k = 0 and add the triple (r2k ,0, r2k) as the last triple to complete the service
to one for r1, . . . , r2k .

We have now proved Theorem 8; in view of Theorem 9, this implies Theo-
rem 7, Theorem 6, and our main result Theorem 3.

5 Conclusions

We related various known and conjectured batch-type properties of the simplex
codes to certain additive problems in finite abelian groups. By applying known
methods for these more general problems we obtained a simple, constructive
proof of a generalization of the theorem that the k-dimensional binary simplex
code is a 2k−1-batch code.
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