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Abstract. We present a simplification of the matrix representation of
quadratic APN functions due to Yu et al. Based on this, we adapt a
method of Yu et al. for searching for quadratic APN functions with
prime field coefficients to the case of planar DO functions. We use this
method to find all such functions (up to CCZ-equivalence) over F3n for
n ≤ 7. We conclude that the currently known planar DO polynomi-
als cover all possible cases for n ≤ 7. We find representatives simpler
than the known ones for the Zhou-Pott, Dickson, and Lunardon-Marino-
Polverino-Trombetti-Bierbrauer families for n = 6.
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1 Introduction

Let Fpn be the finite field with pn elements and F∗pn be its multiplicative group for
some prime p and some positive integer n. We will identify Fpn with the vector
space Fn

p over Fp. An (n,m)-function is a mapping from Fpn to Fpm . When
n = m, any (n, n)-function F has a unique representation as a polynomial in
Fp[x] of the form F (x) =

∑pn−1
i=0 aix

i. This polynomial is called the univariate
representation of F . We typically identify an (n, n)-function with its univariate
representation and use the two interchangeably. Recall that the p-weight of an
integer is the weight of its p-ary expansion. The algebraic degree of F , denoted
deg(F ), is the largest p-weight of any exponent i ∈ {0, 1, 2, . . . , pn − 1} in the
univariate representation of F with ai 6= 0. If deg(F ) ≤ 1, we say that F is
affine; if, in addition, F (0) = 0, we say that F is linear. As the name implies,
any linear function L satisfies c1L(x)+ c2L(y) = L(c1x+ c2y) for any x, y ∈ Fpn

and c1, c2 ∈ Fp. If deg(F ) = 2, we say that F is quadratic, and if F (x) =∑
i,j ai,jx

pi+pj

, we say that F is a DO polynomial (after Dembowski and
Ostrom). Thus, any DO polynomial is quadratic but not vice-versa.

The derivative of F : Fpn → Fpn in direction a ∈ Fpn is the (n, n)-function
DaF (x) = F (a+x)−F (x). Denoting by δF (a, b) the number of solutions x ∈ Fpn

to the equation DaF (x) = b, the differential uniformity δF of F is the max-
imum value of δF (a, b) across all a ∈ F∗pn , b ∈ Fpn . The differential uniformity
is an important cryptographic parameter since it measures the resistance pro-
vided by a function to differential cryptanalysis: the lower the value of δF , the
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stronger the resistance. We say that a function F is planar, or perfect non-
linear (PN) if it attain the optimal value δF = 1. Note that PN functions can
also be defined in the more general context of (n,m)-functions with n 6= m;
however, in this abstract we only consider the case n = m and use the terms
“planar” and “PN” interchangeably. Equivalently, a function F is planar if and
only if all of its derivatives DaF for a ∈ F∗pn permute Fpn . It is easy to see that
PN functions only exist when the characteristic p is odd, since for p = 2 we have
DaF (x) = DaF (a+ x) for any a, x ∈ F2n and any F : F2n → F2n . In the case of
even characteristic, the lowest possible value of δF is 2, and the functions that
attains this value are called almost perfect nonlinear (APN).

Due to the large number of (n, n)-functions, PN and APN functions are
typically classified up to CCZ-equivalence. Named after Carlet, Charpin and
Zinoviev who introduce it in [5], CCZ-equivalence is the most general known
relation that preserves the differential uniformity (and hence, PN-ness and APN-
ness) of (n, n)-functions. We say that F,G : Fpn → Fpn are CCZ-equivalent if
there exists an affine permutation A : Fp2n → Fp2n mapping the graph ΓF =
{(x, F (x)) : x ∈ Fpn} of F to the graph ΓG of G.

Another notion is that of EA-equivalence (extended affine equivalence). We
say that F,G : Fpn → Fpn are EA-equivalent if there are affine permutations
A1, A2 of Fpn and an affine function A : Fpn → Fpn such that A1◦F ◦A2+A = G.
If F and G are CCZ-equivalent, then they are EA-equivalent, but the converse is
not true in general. However, the converse statement is true for some classes of
functions. Most importantly, EA-equivalence implies CCZ-equivalence for planar
functions [4], [11] and quadratic APN functions [16]. Note that any quadratic
function is equivalent to a DO polynomial (up to addition of an affine function),
and so we can use “quadratic” and “DO” interchangeably (up to EA-equivalence).

In general, deciding the CCZ-equivalence of two (n, n)-functions is a hard
computational problem. At present, the only practical way to so is via the iso-
morphism of linear codes [9]. This has a significant time and space complexity,
but it works for any pair of functions over any finite field.

Both PN and APN functions have been the subject of intense study in recent
years, not only because of their cryptographic significance but also due to their
correspondence to important objects in other fields of mathematics and computer
science. For instance, there is a one-to-one correspondence between planar DO
polynomials and commutative semifields [6]; commutative semifields have been
studied since their introduction by Dickson in 1906 [7], and this correspondence
has been used to construct new families and instances of semifields that had
previously eluded researchers, e.g. [4], [21].

In practice, finding new APN and PN functions CCZ-inequivalent to the
known ones is a very hard problem. The number of all (n, n)-functions is too
large to allow for an exhaustive search, and so many mathematical constructions
and computational methods have been developed, e.g. [8], [10], [19]. The difficulty
of finding new instances is particularly prominent in the case of PN functions,
where we currently know less than 10 CCZ-inequivalent instances over Fpn for
odd p and n ≤ 7; for comparison, thousands of CCZ-inequivalent APN functions
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have been constructed over F2n with n ≤ 8 using computational methods such
as [1] and [19]. Despite this apparent abundance of APN instances, we note that
classifying these sporadic instances (coming from computational methods) into
general constructions remains an extremely challenging problem. Finding APN
functions with other desirable properties, such as being permutations, or having
an algebraic degree greater than 2 is quite difficult as well.

A representation of quadratic APN functions in terms of symmetric matrices
is presented in [19]. The authors of [19] use this representation to conduct a
computational search for APN functions by trying to guess the entries of their
associated matrices, and are able to produce more than 400 CCZ-inequivalent
APN functions over F27 , and more than 8 000 CCZ-inequivalent APN functions
over F28 . This is a substantial improvement, since prior to [19], only around
30 CCZ-inequivalent APN functions were known over F28 . In fact, prior to the
publication of [1] (in which more than 20 000 new APN instances over F28 are
reported), the work from [19] was the largest known corpus of CCZ-inequivalent
APN instances. Recently, more than 5 000 new CCZ-inequivalent APN functions
were found using the same matrix method [18]. This shows that such a matrix
representation is well-worth investigating.

The general matrix method from [19] was later specialized to the case of
quadratic APN functions with prime field coefficients, i.e. with a univariate rep-
resentation F (x) =

∑2n−1
i=0 aix

i with ai ∈ F2 for i = 0, 1, 2, . . . , 2n − 1 [17]. This
additional assumption allowed additional dependencies among the elements of
the corresponding matrix to be derived, which in turn reduced the search space
sufficiently to allow a classification of all such functions for for n ≤ 9. Two new
APN functions were discovered over F29 , and it was verified that the known APN
instances over F2n with n ≤ 8 cover all possible cases. In this way, the authors
of [17] provided a complete classification of quadratic APN functions with prime
field coefficients up to n = 9. For comparison, quadratic APN functions have
only been classified up to n = 7 [10], [12], cubic APN functions up to n = 6 [12],
and general APN functions only up to n = 5 [2]. In the case of quadratic planar
functions, a classification of all commutative semifields of order 35 is given in
[20]; based on the correspondence between commutative semifields and planar
DO functions [6], this translates to a classification of all quadratic planar func-
tions over F35 . To the best of our knowledge, there are no known classifications
of planar functions for n > 5.

We refer to [13] for a recent survey on APN and PN functions.
In this paper, we present a simpler formulation of the matrix representation

from [19], and adapt the approach from [17] to the case of DO planar functions.
We derive conditions on matrices corresponding to DO planar functions with
prime field coefficients, and use this to find (up to CCZ-equivalence) all such
planar functions over F3n for n ≤ 7. We conclude that the known instances
cover all possible cases. This is the first computational classification of planar
functions of this sort for n > 5 to the best of our knowledge.

We note that a similar approach has been considered in [15] in terms of the
ANF of the functions. Our approach (based on the univariate representation
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rather than the ANF) has the advantage that it allows us to impose additional
conditions on the derivative matrix when the coefficients of the function are from
the prime field, and to thereby drastically reduce the search space as in [17].

2 Matrix representation of quadratic functions

Let F : Fpn → Fpn be quadratic for a prime p and a positive integer n. Let
B = {b1, b2, . . . , bn} be a basis of Fpn as a vector space over Fp. For a ∈ Fpn , let
∆aF (x) = F (a+x)−F (x)−F (a) = DaF (x)−F (a). The definitions of PN and
APN functions can be adapted to use ∆aF instead of DaF since the difference
between them is F (a) (for a fixed a ∈ Fpn). The advantage of using ∆aF over
DaF is that, for quadratic F , ∆aF is linear while DaF is merely affine.

Let us denote by wt(x) the Hamming weight of the coordinate vector of
x with respect to the basis B; in other words, if x =

∑n
i=1 aibi for ai ∈ Fp,

then wt(x) = #{i ∈ {1, 2, . . . , n} : ai 6= 0}. Observe that knowledge of ∆aF
for all a ∈ F∗pn allows us to uniquely recover F up to EA-equivalence. Indeed,
we can assume without loss of generality that F (b) = 0 for all b ∈ B; then
∆biF (bi) = F (2bi)− 2F (bi), so that we also know F (2bi), and hence the values
of F on all x with wt(x) = 1. For any x of weight 2, i.e. x = bi + bj for some
1 ≤ i < j ≤ n, we consider the identity ∆biF (bj) = F (bi + bj)− F (bi)− F (bj).
Since we know ∆biF (bj), and we have already recovered F (bi) and F (bj), we can
now reconstruct the value of F on x = bi + bj . Continuing by induction, we can
reconstruct all values of F in this way. More formally, we can state the following
proposition. To simplify the exposition, we can assume without loss of generality
that if wt(x) = k, then x = b1 + b2 + · · · + bk. The proof is straightforward by
induction, and is omitted due to space constraints.
Proposition 1. Let {b1, . . . , bn} be a basis of Fpn over Fp. Let F be a quadratic
function from Fpn to Fpn . Then for any x ∈ Fpn of weight k:

F (x) = ∆biF
( ∑

1≤j≤k,j 6=i

bj

)
+ F

( ∑
1≤i≤k,j 6=i

bj

)
, (1)

where x = b1 + . . .+ bk, for any 1 ≤ i ≤ k.
If F is quadratic, then ∆aF is linear, and so it suffices to know ∆aF (b) for

b ∈ B in order to know all values of ∆aF . Since ∆aF (x) is symmetric in a and
x, i.e. ∆aF (x) = ∆xF (a) for any a, x ∈ Fpn , it suffices to know the values of ∆b

for b ∈ B in order to reconstruct ∆aF for all a ∈ Fpn . In this way, knowledge of
∆biF (bj) for all bi, bj ∈ B is equivalent to knowledge of F up to EA-equivalence.
This motivates the following definition.

Definition 1. Let F : Fpn → Fpn for some prime p and some positive integer
n. The derivative matrix of F is the matrix MF ∈ Fn×n

pn given by

MF =


∆b1F (b1) ∆b1F (b2) . . . ∆b1F (bn)
∆b2F (b1) ∆b2F (b2) . . . ∆b2F (bn)

...
...

. . .
...

∆bnF (b1) ∆bnF (b2) . . . ∆bnF (bn)

 .
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Clearly, we can obtain MF from F by evaluating its derivatives on the basis
elements. Conversely, given a matrix MF corresponding to a quadratic (n, n)-
function, we can reconstruct the coefficients of its univariate representation as
shown in the following proposition. Thus, we can easily convert between the
matrix and univariate representation of quadratic functions. The proof of the
proposition is straightforward, and we omit it here due to space constraints.

Proposition 2. Let {b1, . . . , bn} be a basis of Fn
p . Let F : Fpn → Fpn be a DO

polynomial, i.e. F (x) =
∑

1≤i,j≤n−1,i≤j
aijx

pi−1+pj−1

. Then

MF = BTAB, (2)

where B =


bp

0

1 bp
0

2 . . . bp
0

n

bp
1

1 bp
1

2 . . . bp
1

n
...

...
. . .

...
bp

n−1

1 bp
n−1

2 . . . bp
n−1

n

, A =


2a11 a12 . . . a1n
a12 2a22 . . . a2n
...

...
. . .

...
a1n a2n . . . 2ann

 and BT is the

transpose of B.

We now consider how PN and APN functions can be characterized in terms of
the derivative matrix MF . Following [19], we define the rank of a vector v ∈ Fn

pn

to be the dimension of the subspace spanned by its elements. In other words, if
v = (v1, v2, . . . , vn) with vi ∈ Fpn , the rank of v is r(v) = logp #{a1v1 + a2v2 +
· · ·+ anvn : a1, a2, . . . , an ∈ Fp}. We now have the following characterization.

Proposition 3. Let F be an (n, n)-function and MF be its derivative matrix.
Then F is PN if and only if any non-zero linear combination of the rows of MF

has rank n.

Proof. If F is not PN, then ∆aF does not permute Fpn for some a ∈ F∗pn , and
so there must be distinct x, y ∈ Fpn such that ∆aF (x) = ∆aF (y). Consequently,
∆aF (x − y) = 0, and so r(∆aF (b1), ∆aF (b2), . . . ,∆aF (bn)) < n. By the pre-
ceding discussion, if a =

∑n
i=1 aibi, then the vector (∆aF (b1), . . . ,∆aF (bn)) is

actually the linear combination
∑n

i=1 aiRi, where Ri is the row of MF corre-
sponding to bi.

Conversely, suppose that F is PN, and let a ∈ F∗pn . Then the pn linear
combinations of ∆aF (b1), . . . ,∆aF (bn) are precisely the values of ∆aF on the
pn elements of Fpn . Since ∆aF is a permutation of Fpn , we have that all these
linear combinations are distinct, and thus (∆aF (b1), . . . ,∆aF (bn)) has full rank.

In the case of APN functions over fields of even characteristic, we can give
a similar characterization as follows. The proof resembles that of Proposition 3
3, using the fact that all derivatives of an APN (n, n)-function must take 2n−1

distinct values.

Proposition 4. Let F : F2n → F2n for some positive integer n. Then MF has
only zeros on its main diagonal, and F is APN if and only any linear combination
of the rows of MF has rank n− 1.
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Generalizing Propositions 3 and 4 to functions of higher differential unifor-
mity is straightforward. Since our focus is exclusively on planar functions, we
omit doing this here. In the case of differential uniformity equal to 2, Proposition
4 can be compared with Theorem 1 and Definition 5 of [19]. The condition on
the rank of the linear combinations of rows of MF is the same in both cases; the
advantage of our approach is that the matrix MF has a clear intuitive meaning
(containing the values of the first-order derivatives of F on the basis elements),
and is consequently easier to analyze and to construct from F in practice. Note
that in the case of odd characteristic, the main diagonal ofMF is not necessarily
zero since ∆xF (x) is not equal to 0 in general.

In particular, from the interpretation of MF in terms of the derivatives of F ,
we see that applying a linear permutation L : Fpn → Fpn to all elements of MF

gives the derivative matrix of L(F ). Compare this with Theorem 3 of [19] which
requires a non-trivial proof. We state this as an observation; in practice, we use
it to restrict the number of matrices that we consider in our search.

Observation 1 Let MF be the derivative matrix of F : Fpn → Fpn , and let
L : Fpn → Fpn be a linear function. Then the matrix M ′F defined by (M ′F )i,j =
L((MF )i,j) for all i, j is the derivative matrix of L ◦ F . In particular, if L is a
permutation, then MF and M ′F correspond to EA-equivalent functions.

3 Functions with prime field coefficients

As in [17], we now consider the case of quadratic functions F : Fpn → Fpn

with prime field coefficients, i.e. with coefficients in the subfield Fp. Since the
Frobenius automorphism x 7→ xp fixes Fp, we have F (xp) = F (x)p (and, more
generally, F (xp

k

) = F (x)p
k

for any non-negative integer k) for any such function.
Consequently, we have ∆

apkF (x
pk

) = (∆aF (x))
pk

for any non-negative integer
k. If we construct the matrix MF corresponding to F with respect to a normal
basis, i.e. with respect to a basis B = {b, bp, bp2

, . . . , bp
n−1} for some suitable b ∈

F∗pn , then MF will be such that (MF )i+1,j+1 = (MF )
p
i,j for any 0 ≤ i, j ≤ n− 1;

here we index the rows and columns from 0 to n−1, since (MF )i+1,j+1 = (MF )
p
i,j

is true if the indices i, j are considered modulo n; in other words, we have e.g.
(MF )0,1 = (MF )

p
n−1,0.

This severely restricts the number of elements that we have to guess in order
to completely determine MF . For instance, the matrices M6

F and M7
F corre-

sponding to a (6, 6)- and (7, 7)-function become

M
6
F =



A B C D Cp4 Bp5

B Ap Bp Cp Dp Cp5

C Bp Ap2 Bp2 Cp2 Dp2

Dp3 Cp Bp2 Ap3 Bp3 Cp3

Cp4 Dp4 Cp2 Bp3 Ap4 Bp4

Bp5 Cp5 Dp5 Cp3 Bp4 Ap5


,M

7
F =



A B C D Dp5 Cp4 Bp6

B Ap Bp Cp Dp Dp5 Cp6

C Bp Ap2 Bp2 Cp2 Dp2 Dp6

D Cp Bp2 Ap3 Bp3 Cp3 Dp3

Dp4 Dp Cp2 Bp3 Ap4 Bp4 Cp4

Cp5 Dp5 Dp2 Cp3 Bp4 Ap5 Bp5

Bp6 Cp6 Dp6 Dp3 Cp4 Bp5 Ap6


,
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respectively, with A,B,C,D ∈ Fp6 for M6
F , and A,B,C,D ∈ Fp7 for M7

F . It is
easy to see that in the case of even n, we have to guess n/2+1 values in order to
specify MF , while for odd n, we have to guess (n+1)/2 values. When n is even,
we can restrict one of the values to the subfield Fpn/2 : for instance, in M6

F , we
have D = Dp3

due to the fact that M6
F is symmetric (since ∆aF (x) = ∆xF (a)),

and so we must have D ∈ Fp3 . This naturally generalizes to an arbitrary even
dimension n.

Some further necessary conditions can be obtained by observing that the
linear combinations of the rows of any submatrix of MF must also have full
rank. Following [19], we say that a matrix S ∈ Fm×k

pn is proper if any non-zero
linear combination of the rows of S has rank k. Thus, MF is proper if and only
if it represents a PN function; and, clearly, if MF is proper, then the same is
true for any submatrix of MF (since if some linear combination of the rows of a
submatrix S ∈ Fm×k

p of MF spans a subspace of dimension less than k, then the
same linear combination of the rows of the entire matrix MF will have rank less
than n since appending n− k elements can increase the rank by at most n− k).

This submatrix condition is particularly valuable for submatrices that only
depend on a subset of the variables needed to specify the matrix. For instance,
the submatrix of M6

F on the rows with indices {0, 1} and the columns with
indices {0, 1, 2, 5} depends on A,B,C, but not on D. Similarly, the submatrix
with rows and columns with indices {0, 1} depends only on A and B. After
guessing the value of e.g. A and B, we can check whether all submatrices that
depend only on A and B are proper; if not, we can backtrack immediately, thus
saving significant computation time.

In this paragraph, we will denote the matrix corresponding to the rows with
indices R and columns with indices C by (R,C). For M6

F , we use the sub-
matrices corresponding to ({0, 5}, {0, 5}), ({0, 1}, {0, 1}) that depend only on
A and B; and those corresponding to {(0, 1, 5}, {0, 1, 5}), ({0, 2, 4}, {0, 2, 4}),
({0, 1}, {0, 1, 2, 5}), ({0, 2}, {0, 1, 2, 4}), ({0, 5}, {0, 1, 4, 5}), ({0, 1, 4}, {0, 2, 5}) and
({0, 1, 2}, {0, 1, 2}) depending only on A,B,C.

In the case of M7
F , we use ({0, 6}, {0, 6}) and ({0, 1}, {0, 1}) that only de-

pend on A,B, and ({0, 1, 6}, {0, 1, 6}), ({0, 5, 6}, {0, 5, 6}), ({0, 1}, {0, 1, 2, 6}),
({0, 6}, {0, 1, 5, 6}), ({0, 1, 2}, {0, 1, 2}) that depend on A,B,C.

We note that the above lists do not exhaust all submatrices that only depend
on a subset of values, but according to our empirical observations, verifying
whether other submatrices are proper does not detect any contradictions beyond
the ones obtained from the submatrices listed above. For dimensions n less than
6, the computation time is so short that we do not have to consider submatrix
conditions of this form. As an example of how this improves the efficiency of
the search, we note that for n = 6, conducting the search for one fixed value of
A without the submatrix conditions takes around 7000 seconds as opposed to
around 5500 seconds with the submatrix conditions.
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4 Computational results

We run our searches on a server with 56 3.2 GHz cores and 500 GB of memory.
We perform an exhaustive search over all possible matrices MF corresponding
to quadratic functions with prime field coefficients over F3n for n ≤ 7. In order
to facilitate the search, we use Observation 1 to restrict the value of one of the
entries ofMF . However, while there is a linear permutation L such that L(c) = c′

for any two non-zero c, c′ ∈ Fpn , the composition of such a permutation with
a function having prime field coefficients is not necessarily going to have prime
field coefficients, and so we cannot simply fix the value of the first variable inMF

to 1. However, we consider all linear permutations with prime field coefficients
over F3n , and use them to restrict the choice of the first variable, A, in MF .
More precisely, we define an equivalence relation ∼ on F∗pn with a ∼ b if there
exists a linear permutation L : Fpn → Fpn with prime field coefficients such that
L(a) = b. The number of such linear permutations is sufficiently small for us to
partition F∗3n into equivalence classes according to ∼ for all the dimensions that
we consider. Since composing two functions with prime field coefficients gives a
function that also has prime field coefficients, it then suffices to consider only
one element from each class as the value of the first variable in MF . For n = 5
and n = 7, we get 3 equivalence classes; for n = 4, we get 7; and for n = 6, we
get 15.

In the case of n = 4, the search takes less than 2 seconds, and yields 24
functions. For n = 5, it takes about 17 seconds and yields 616 functions. For
n = 6, we run 15 parallel processes, one for each equivalence class of the rela-
tion ∼ described in the previous paragraph; each process (with the submatrix
conditions) takes around 5500 seconds (as pointed out above); in total, we get
2928 functions. Finally, in the case of n = 7, we conduct the search by running
22 processes in parallel on the server (each process handling all three equiva-
lence classes under ∼), with each process handling 100 (out of 37 − 1) possible
values for B. Each of the 22 processes takes around 150 000 seconds to finish.
Ultimately, we obtain 5093 functions.

The real bottleneck is classifying the functions under CCZ-equivalence. The
code isomorphism test can take up to around 5 seconds for n = 5, around a
minute for n = 6, and around an hour for n = 7. In order to speed up the
classification for n = 7, we first compose each function F with all possible linear
permutations L with prime field coefficients from the left (L ◦ F ) and from the
right (F ◦L); if the composition belongs to the list of 5093 functions, we remove
it from there. This takes around a day, and leaves us with about 2500 functions.
There are around 1400 linear permutations with prime field coefficients over F37 ,
so considering L1 ◦ F ◦ L2 for all pairs (L1, L2) is not feasible; instead, we take
pairs of permutations (L1, L2) at random and remove L1 ◦ F ◦ L2 from the list
(if it is in it). After several days of computations, we are able to cut down the
number of functions to around 400. Running the code isomorphism test on 40
processes in parallel enables us to classify them. The computation takes about 3
months. The time for classifying the functions for n < 7 is negligible compared
to the time for n = 7. However, we see that classification in higher dimensions
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is practically impossible without a faster test, or an efficient invariant to help us
distinguish between inequivalent functions.

We omit a list of the known CCZ-classes of planar functions since we see that
all functions that we find are CCZ-equivalent to one of the known instances. We
refer the reader to [13] for an excellent survey on planar functions which includes
all known families and sporadic instances. The families referenced in the last
column of Table 1 refer to the names used in [13].

We only find functions that are CCZ-equivalent to known ones. However,
in the case of n = 6, we find representatives for the Zhou-Pott, the Dickson,
and the Lunardon-Marino-Polverino-Trombetti-Bierbrauer (LMPTB) functions
that are simpler than the known ones. Comparing with the representatives given
in [3] and [14], we see that in the case of Zhou-Pott, our representative has 7
terms with prime field coefficients, while the one in [3] has 11 terms with various
coefficients; for the Dickson case, our representative has 5 terms, as opposed to
the 6 terms in [14] and the 7 terms in [3]; and for LMPTB, our representative
has 5 terms while the one in [3] and [14] has 7 terms.

More importantly, we obtain a complete classification of all quadratic planar
functions with prime field coefficients over F3n up to n = 7. A complete overview
is given in Table 1.

Table 1. CCZ-representatives from all quadratic planar functions with prime field
coefficients over F3n with 4 ≤ n ≤ 7

n F Family

4 x2 Finite field
x36 + 2x10 + 2x4 Dickson

5

x2 Finite field
x4 Albert
x10 Albert

x10 + x6 + 2x2 Coulter-Matthews-Ding-Yuan
x10 + 2x6 + 2x2 Coulter-Matthews-Ding-Yuan

x90 + x2 sporadic
x162 + x108 − x84 + x2 sporadic

6

x2 Finite field
x10 Albert

x162 + 2x108 + 2x90 + x82 + 2x10 + x4 + x2 Zhou-Pott (*)
2x270 + 2x244 + x54 + x36 + x10 + x2 Dickson (*)

2x486 + x270 + 2x162 + x90 + x2 LMPTB (*)

7

x2 Finite field
x4 Albert
x10 Albert
x28 Albert

x10 + x6 + 2x2 Coulter-Matthews-Ding-Yuan
x10 + 2x6 + 2x2 Coulter-Matthews-Ding-Yuan
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