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Abstract. In this talk, we will show that the proportion of MRD codes
within the set of codes of the same cardinality is very small when the
field size q is large, both in the linear and the non-linear setting. More
precisely, we will prove that the asymptotic density of MRD codes is
0 as q tends to infinity. The approach is mainly based on the study of
isolated vertices in bipartite graphs. It shows a strong divergence between
codes in the Hamming and in the rank metric.
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1 Introduction

A rank metric code is a set of matrices in Fnˆm
q over a finite field Fq, in which the

difference of any two (distinct) matrices in this set have rank distance bounded
from below by a given integer. The largest such number, often denoted by d,
is called the minimum distance of the code. rank metric codes were first intro-
duced by Delsarte for combinatorial interest [1], and since then they have gained
interest in different areas of mathematics and information theory; see [2–6] for
example. The rank metric analogue of the well-known Singleton-bound gives the
class of Maximum Rank Distance (MRD) codes, which are optimal codes and
exist for any m,n and d ď n.

In this extended abstract, we analyse the asymptotic densities of MRD codes
(both in the non-linear and linear setting). More in detail, we fix a value for
the minimum distance d and we compute the asymptotics, as q Ñ `8, of the
proportion of MRD codes of that distance, respectively, within the set of codes
that share the same cardinality. This question has been studied before in the
linear setting, where in [7–9] it was shown that MRD codes are not dense within
the set of codes having the same dimension. In [10] it was shown that MRD
codes are actually always (very) sparse as the field size q tends to infinity except
for very few exceptions. We revisit the results of [10] and we also show how to
approach the problem in the non-linear setting.

2 Preliminaries

Throughout the paper, q is a prime power, Fq is the finite field with q elements,
and m ě n ě 2 denote integers. All asymptotic estimates are for q Ñ8. In this
paper we work with rank-metric codes; see e.g. [1, 6, 11].
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Definition 1. A (rank metric) code over Fq is a non-empty subset C Ď

Fnˆm
q . When |C | ě 2 its minimum (rank) distance is the integer

dpC q “ mintrkpM ´Nq |M,N P C , M ‰ Nu.

A code C is linear if it is an Fq-linear subspace of Fnˆm
q . We will write C ď Fnˆm

q

in this case.

A rank metric code cannot both have large dimension and minimum distance.
The trade-off between these quantities is captured by the following result of
Delsarte.

Theorem 1 (Singleton-like bound; see [1, Theorem 5.4]). Let C Ď Fnˆm
q

be a rank metric code of minimum distance d. We have |C | ď qmpn´drk
pC q`1q.

A rank metric code is called MRD if it meets the bound of Theorem 1 with
equality. In contrast with MDS codes, MRD codes exist for all parameter sets
and field sizes; see [1].

Definition 2. The ball of radius 0 ď r ď n in Fnˆm
q is the set of matrices

M P Fnˆm
q with rkpMq ď r. It is well-known that its size is

bqpnˆm, rq :“
r
ÿ

i“0

„

n
i



q

i´1
ź

j“0

pqm ´ qjq „ qrpm`n´rq. (1)

It is natural to ask whether the typical rank metric code of a given cardinality
is MRD or not. In this extended abstract, we concentrate on the scenario where
the alphabet size q is large. To address this question formally, we consider the
problem of estimating the proportion of MRD codes (linear and non-linear) of a
certain cardinality within the family of codes having the same cardinality. Recall
that

„

a
b



q

“

b´1
ź

i“0

`

qa ´ qi
˘

pqb ´ qiq

denotes the number of b-dimensional subspaces of an a-dimensional space over
Fq. This number is called the q-binomial coefficient of a and b. In order to
simplify arguments in the sequel, we introduce the following terminology.

Definition 3. For 1 ď d ď n, let k “ mpn´ d` 1q and

δqpnˆm, dq “
|tC Ď Fnˆm

q | |C | “ qk, drkpC q “ du|
ˆ

qmn

qk

˙

denote the density (function) of (possibly) non-linear MRD codes in Fnˆm
q with

minimum distance at least d among all codes of cardinality qk. Their asymptotic
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density is limqÑ`8 δqpnˆm, dq, when the limit exists. Analogously, we denote
the density function of Fq-linear MRD codes of minimum distance 1 ď d ď n as

δqrnˆm, ds “
|tC ď Fnˆm

q | dimpC q “ k, drkpC q “ du|
„

mn
k



q

,

and their asymptotic density is limqÑ`8 δqrnˆm, ds.

Since we focus on large alphabets, we study the asymptotics of the previ-
ous problem for q going to infinity. More formally, we denote by Q the set of
prime powers, fix m,n and d, and we want to study how the asymptotic density
limqÑ`8 δqpn ˆ m, dq (and limqÑ`8 δqrn ˆ m, ds) behaves. If the asymptotic
density for q Ñ `8 is 0, then we say that MRD codes are sparse. If instead
the asymptotic density is 1, we say that they are dense.

Notation 2. We use the Bachmann-Landau notation (“Little O” and “„”) to
describe the asymptotic growth of real-valued functions defined on Q; see e.g. [12].
We omit “q P Q” when writing q Ñ `8 and often omit “as q Ñ `8” when
writing, for example, “fpqq P op1q”.

3 Graph Theory Tools

In this section we briefly state some graph theory tools we will need later. The
results are taken from [10] and the proofs are omitted.

Definition 4. A (directed) bipartite graph is a 3-tuple B “ pV ,W ,E q,
where V and W are finite non-empty sets and E Ď V ˆ W . The elements of
V YW are the vertices of the graph. We say that a vertex W P W is isolated
if there is no X P V with pX,W q P E . We say that B is left-regular of degree
B ě 0 if for all X P V

|tW P W | pX,W q P E u| “ B.

In order to give bounds for the number of non-isolated vertices in a bipartite
graph, we need the notion of an association.

Definition 5. Let V be a finite non-empty set and let r ě 0 be an integer.
An association on V of magnitude r is a function α : V ˆ V Ñ t0, ..., ru
satisfying the following:

(i) αpX,Xq “ r for all X P V ;
(ii) αpX,Y q “ αpY,Xq for all X,Y P V .

Let B “ pV ,W ,E q be a finite bipartite graph and let α be an association
on V of magnitude r. We say that B is α-regular if for all pX,Y q P V ˆV the
number of vertices W P W with pX,W q P E and pY,W q P E only depends on
αpX,Y q. If this is the case, we denote this number by W`pαq, where ` “ αpX,Y q.
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Remark 1. Note that an α-regular bipartite graph for an association α is neces-
sarily left-regular of degree B “ Wrpαq.

The main results stated in this extended abstract will be derived by the
following bound.

Lemma 1 (see [10, Lemma 3.5]). Let B “ pV ,W ,E q be a finite bipartite
α-regular graph, where α is an association on V of magnitude r. Let F Ď W be
the collection of non-isolated vertices of W . If Wrpαq ą 0, then

|F | ě
Wrpαq

2 |V |2
řr

`“0 W`pαq |α´1p`q|
.

The previous lemma follows by combining the notion of an association and
the Cauchy-Schwarz Inequality. We refer to [10] for the proof.

4 Density of (Possibly) Non-Linear MRD Codes

We show how to apply the results of Section 3 to derive estimates for the number
of (non-linear) codes in the rank metric having minimum distance bounded from
below.

Notation 3. In this section, let m,n and d be fixed integers with 2 ď d ď n ď m
and let k “ mpn´ d` 1q. We work with the bipartite graphs

Bq “ pVq,Wq,Eqq,

where

Vq “ ttM,Nu Ď Fnˆm
q |M ‰ N, dpM,Nq ď d´ 1u,

Wq is the collection of codes in Fnˆm
q of cardinality qk, and ptM,Nu,C q P Eq if

and only if tM,Nu Ď C .

It is easy to see that the isolated vertices in Wq correspond to the MRD codes
in Fnˆm

q . Since we fixed d in this section, from now on, let bq denote the size of
the ball in Fnˆm

q in the rank metric of radius d´ 1 (see Definiton 2). We have

|Vq| “
1

2
qmn pbq ´ 1q , |Wq| “

ˆ

qmn

qk

˙

.

It follows from the definitions that Bq is a left-regular graph of degree

ˆ

qmn ´ 2
qk ´ 2

˙

.

We now use Lemma 1 to derive a lower bound for the number of non-MRD
codes which gives an upper bound on the number of MRD codes.
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Theorem 4. Let Fq be the collection of codes C Ď Fnˆm
q that have cardinal-

ity qk and minimum distance at most d´ 1. Define the quantities

βqp0q “
1

2
qmnpbq ´ 1q ´ 2bq ` 3,

βqp1q “ 2bq ´ 4,

Ωq “ 1` βqp1q
qk ´ 2

qmn ´ 2
` βqp0q

pqk ´ 2qpqk ´ 3q

pqmn ´ 2qpqmn ´ 3q
.

For all q P Q we have

|Fq| ě

qmnpbq ´ 1q

ˆ

qmn ´ 2

qk ´ 2

˙

2Ωq
.

In particular,

δqpnˆm, dq ď 1´
pbq ´ 1qqkpqk ´ 1q

2Ωqpqmn ´ 1q
.

Proof. Let α : Vq ˆ Vq Ñ t0, 1, 2u be defined by

αptM,Nu, tK,Luq :“ 4´ |tM,N,K,Lu|

for all M,N,K,L P Fnˆm
q . We claim that for all q P Q we have

|α´1p2q| “ |Vq|,

|α´1p1q| “ 2|Vq|pbq ´ 2q,

|α´1p0q| “ |Vq|p|Vq| ´ 2bq ` 3q.

Indeed, it is not hard to see that |α´1p2q| “ |Vq|. All the elements of α´1p1q can
be constructed by freely choosing tM,Nu P Vq and then tK,Lu P Vq with either
K “M or K “ N and

L P tX P Fnˆm
q | dpX,Kq ď d´ 1uztM,Nu.

Therefore
|α´1p1q| “ 2|Vq|pbq ´ 2q.

To compute |α´1p0q| we simply note that

|Vq|
2 “ |α´1p0q| ` |α´1p1q| ` |α´1p2q|.

Therefore the value of |α´1p0q| follows from the values of |α´1p1q| and |α´1p2q|.
One easily checks that α is an association on Vq and that the bipartite

graph Bq is regular with respect to α. More precisely, for ptM,Nu, tK,Luq P
Vq ˆ Vq if we let ` “ αptM,Nu, tK,Luq then

Wq,`pαq :“ |tW P Wq | tM,N,K,Lu ĎW u|

“

ˆ

qmn ´ 4` `
qk ´ 4` `

˙

. (2)
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We can now apply Lemma 1 obtaining that |Fq| is lower bounded by

Wq,2pαq
2 |Vq|

2

|α´1p2q|Wq,2pαq ` |α´1p1q|Wq,1pαq ` |α´1p0q|Wq,0pαq
.

Finally, combining the identity

ˆ

m

`

˙

“
m

`

ˆ

m´ 1

`´ 1

˙

(3)

with the formulas for |α´1p2q|, |α´1p1q| and |α´1p0q| and Equation (2), easy
computations yield the desired result.

In order to study the asymptotics of the previous bound on the density as
the alphabet size q tends to infinity we will need the following estimate:

bq „ qpd´1qpm`n´d`1q as q Ñ `8. (4)

With this we get one of the main results presented in this extended abstract.

Theorem 5. We have limqÑ`8 δqpn ˆ m, dq “ 0. In particular, (non-linear)
MRD codes are sparse for all parameter sets.

Proof. It is not hard to see that

Ωq „
1

2
q´mn`pd´1qpm`n´d`1q`2k as q Ñ `8.

Therefore we have

pbq ´ 1qqkpqk ´ 1q

2Ωqpqmn ´ 1q
„ 1 as q Ñ `8.

This proves the statement.

5 Density of Linear MRD Codes

The problem of deciding whether MRD codes are dense or not has been studied
before and we start this section with revisiting the approaches been developed
so far, one of which is the subject of this extended abstract. We start by briefly
recalling the results obtained with the other three approaches. Note that we only
focus on the case where q Ñ `8 here, but in [7, 8, 10] the asymptotic behavior
of the density function for mÑ `8 was investigated as well.

In [8], a combinatorial approach to study asymptotic enumeration problems
in coding theory was developed, based on the notion of a partition-balanced
family of codes. Applying the machinery to the problem of estimating the number
of linear MRD codes, one obtains the following.
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Theorem 6 (see [8, Corollary 6.2]). If d ě 2, then

lim sup
qÑ`8

δqpnˆm, dq ď 1{2.

Another (sharper) upper bound on the number of MRD codes is obtained
in [7] using the theory of spectrum-free matrices. It reads as follows.

Theorem 7 (see [7, Theorem VII.6]). We have

lim sup
qÑ`8

δqpnˆm, dq ď

˜

m
ÿ

i“0

p´1qi

i!

¸pd´1qpn´d`1q

.

In [7], it is also shown that the bound of Theorem 7 is sharp if d “ n “ 2
and for all values of m ě 2.

Finally, in [9] the exact number of MRD codes with the parameters m “ n “
d “ 3 is computed, showing that these codes are sparse. The approach of [9] is
based on the connection between full-rank MRD codes and semifields.

In this section we establish the analogue of Theorem 5 for Fq-linear MRD
codes. The results are taken from [10] and the proofs are omitted.

Notation 8. We fix integers m, n and d with 1 ď d ď n ď m and we let
k “ mpn´ d` 1q. We consider the bipartite graphs

B̃q “ pṼq, W̃q, Ẽqq,

where Ṽq is the set of matrices in Fnˆm
q of rank smaller or equal to d ´ 1 (up

to multiples), W̃q is the collection of Fq-linear codes in Fnˆm
q with dimension k,

and pM,C q P Ẽq if and only if M P C .

We again let bq denote the size of the ball in Fnˆm
q of radius d´1. Note that

we have

|Ṽq| “
bq ´ 1

q ´ 1
, |W̃q| “

„

mn
k



q

.

It is easy to check that B̃ is α-regular with respect to the association α : Ṽ ˆ
Ṽ Ñ t0, 1u where αpV, V 1q “ dimpV X V 1q for V, V 1 P Ṽq. Simple computations
show that by applying Lemma 1 we get the following result.

Theorem 9. Let F̃q be the collection of rank metric codes C ď Fnˆm
q of di-

mension k and minimum distance at most d´ 1. We have

|F̃q| ě

ˆ

bq ´ 1

q ´ 1

˙ „

mn´ 1
k ´ 1

2

q
„

mn´ 1
k ´ 1



q

`

ˆˆ

bq ´ 1

q ´ 1

˙

´ 1

˙„

mn´ 2
k ´ 2



q

.
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In particular,

δqrnˆm, ds ď 1´

ˆ

bq ´ 1

q ´ 1

˙ „

mn´ 1
k ´ 1

2

q
„

mn
k



q

˜

„

mn´ 1
k ´ 1



q

`

ˆˆ

bq ´ 1

q ´ 1

˙

´ 1

˙„

mn´ 2
k ´ 2



q

¸ .

In order to compute the asymptotic density of linear MRD codes, we use
the well-known estimate for q-ary binomial coefficient, which says that for non-
negative integers a ě b we have

„

a
b



q

„ qbpa´bq as q Ñ `8.

The following result shows the sparseness of linear MRD codes. We omit the
proof but it can be found in [10].

Theorem 10. We have

δqrnˆm, ds P O
´

q´pd´1qpn´d`1q`1
¯

as q Ñ `8.

In particular, linear MRD codes are sparse whenever n ě 3 and d ě 2.

6 Discussion and Future Work

We described the behavior of the density function of possibly non-linear and
linear MRD codes. Both families of codes are very sparse within the set of codes
of the same cardinality. This means, if one chooses uniformly at random a rank
metric code of a certain cardinality, this code will most probably not be MRD.
This is in stark contrast with the behavior of linear MDS codes in the Hamming
metric for example but it coincides with the asymptotic behavior of possibly
non-linear MDS codes.

A natural question inspired by the above results is that of understanding
more about which structural invariants of a metric space determine whether or
not a uniformly random subset has good distance properties. It seems that graph
theory is a valid tool for approaching this problem.
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