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Abstract. We present a new family of binary quantum codes constructed
from quaternary linear Hermitian self-dual codes. We provide a minimum
distance lower bound for our quantum codes using the theory of duadic
codes. Many new record-breaking quantum codes obtained from our con-
struction are also presented.
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1 Background

Quantum error-correcting codes or simply quantum codes are applied to protect
quantum information from corruption by noise (decoherence) on the quantum
channel in a way that is similar to that of classical error-correcting codes. The
parameters of a binary quantum code that encodes k logical qubits into n phys-
ical qubits and has minimum distance d are denoted by [[n, k, d]].

An important class of quantum codes is quantum stabilizer codes. Binary
stabilizer codes were introduced in the works by Calderbank et al. [3] and Gottes-
man [5]. Each binary stabilizer code is a quaternary additive code (an additive
subgroup of Fn

4 ) which is self-orthogonal with respect to a certain trace inner
product [3]. For more information about the structure of quantum codes and
their algebraic constructions we refer to the recent survey [7]. In this work, we
only restrict our attention to F4-linear subspaces of Fn

4 and the following theorem
gives the connection between quaternary linear codes and quantum codes.

Theorem 1. [3, Theorem 2] Let C be a linear [n, k, d] code over F4 such that
C⊥h ⊆ C, where C⊥h is the Hermitian dual of C. Then we can construct an
[[n, 2k − n, d′]] binary quantum code, where d′ ≥ d.

If the quantum code of Theorem 1 has minimum distance d′ = d, then the code
is called a pure quantum code. There are several secondary constructions for
quantum codes which take a quantum code and produce a new quantum codes
applying standard constructions such as puncturing, lengthening, and shortening
of the original code. The next theorem provides two of such constructions.

Theorem 2. [3, Theorem 6] Suppose that an [[n, k, d]] quantum code exists.



1. If n ≥ 2 and the code is pure, then there exists an [[n − 1, k + 1, d − 1]]
quantum code.

2. If n ≥ 2, then an [[n− 1, k, d− 1]] quantum code exists.

Duadic codes are an important class of linear cyclic codes and they are thor-
oughly discussed in [10, Chapter 6] and [9, Section 2.7]. We briefly recall several
important properties of this class of linear codes below.

Let q be a prime power and Fq be the field of q elements. Throughout this
extended abstract, n is always a positive integer such that gcd(n, q) = 1.

A linear code C ⊆ Fn
q is called cyclic if for every c = (c0, c1, · · · , cn−1) ∈

C, the vector (cn−1, c0, · · · , cn−2) obtained by a cyclic shift of the coordinates
of c is also in C. It is well known that there is a one-to-one correspondence
between cyclic codes of length n over Fq and ideals of the ring Fq[x]/〈xn − 1〉,
for example see [10, Section 4.2]. Under this correspondence, each cyclic code can
be uniquely represented by a monic polynomial g(x), where g(x) is the minimal
degree generator of the corresponding ideal. The polynomial g(x) is called the
generator polynomial of such cyclic code. Let α be a primitive n-th root of unity.
Alternatively, we can represent the above cyclic code by its unique defining set

{t : 0 ≤ t ≤ n− 1 and g(αt) = 0}.

For each a ∈ Zn, the set Za = {(aqj) mod n : 0 ≤ j ≤ m − 1}, where m is
the smallest positive integer such that aqm ≡ a (mod n) is called a q-cyclotomic
coset modulo n. The q-cyclotomic cosets partition Zn and each defining set of a
linear cyclic code is a union of cyclotomic cosets.

For any integer a such that gcd(n, a) = 1, the function µa defined on Zn by
µa(x) = (ax) mod n is called a multiplier. Clearly a multiplier is a permutation
of Zn.

Definition 1. [9, Section 2.7] Let S1 and S2 be unions of non-zero q-cyclotomic
cosets modulo n such that

1. 0 /∈ S1 ∪ S2

2. S1 ∪ S2 ∪ {0} = Zn and S1 ∩ S2 = ∅,
3. there is a multiplier µb such that µbS1 = S2 and µbS2 = S1.

Then the pair {S1, S2} is called a splitting of Zn given by µb over Fq.

A vector (x1, x2, · · · , xn) ∈ Fn
q is called even-like provided that

n∑
i=1

xi = 0

and it is called odd-like otherwise. A linear code is called even-like if it has only
even-like codewords; a linear code is called odd-like if it is not even-like. In the
binary case an even-like code has only even weights.

Binary duadic codes were first introduced by Leon et al. [13], and later they
were generalized to larger fields by Pless [15, 16].



Definition 2 (Duadic codes). [10, Theorem 6.1.5] [9, Section 2.7] Let {S1, S2}
be a splitting of Zn over Fq. Then the linear cyclic codes with the defining sets
S1 ∪ {0} and S2 ∪ {0} are called a pair of even-like duadic codes. The linear
cyclic codes with the defining sets S1 and S2 are called a pair of odd-like duadic
codes.

A comprehensive list of important properties of duadic codes is provided
below.

Theorem 3. [18, Theorem 3.1][10, Theorem 6.1.3] Let (C1, C2) and (D1, D2)
be pairs of even-like and odd-like duadic codes of length n over Fq, respectively,
such that C1 ⊆ D1 and C2 ⊆ D2. Then

1. C1 and C2 (respectively D1 and D2) are permutation equivalent codes.
2. C1 ∩ C2 = {0} and C1 + C2 is the cyclic code generated by x− 1.
3. D1 ∩ D2 = H and D1 + D2 = Fn

q , where H is the subspace of Fn
q with all

ones vector as a basis.
4. dimC1 = dimC2 = (n− 1)/2 and dimD1 = dimD2 = (n+ 1)/2.
5. C1 is the subcode of D1 containing all even-like vectors. The same holds for

C2 as the subcode of D2.
6. D1 = C1 ⊕H and D2 = C2 ⊕H.
7. If C1 is Hermitian self-orthogonal, then C⊥h

1 = D1 and C⊥h
2 = D2.

Now we briefly mention the class of quadratic residue codes which are special
cases of duadic codes. Let p be an odd prime number. Let Qp be the set of non-
zero squares (quadratic residues) modulo p and Np be the set of nonsquares
(quadratic nonresidues) modulo p. The sets Qp and Np satisfy the following
properties:

1. |Qp| = |Np| = p−1
2 .

2. aQp = Qp and aNp = Np for any a ∈ Qp. Also, bQp = Np and bNp = Qp for
any b ∈ Np.

If q ∈ Qp then each q-cyclotomic coset modulo p different from {0} either is
a subset of Qp or it is a subset of Np. Thus Qp and Np give a splitting of Zp

given by µb for any b ∈ Np. The duadic codes corresponding to such splitting
are called quadratic residue codes, abbreviated QR codes, of length p over Fq.

Self-orthogonal duadic codes and QR codes over F4 with respect to the Her-
mitian inner products are discussed below.

Theorem 4. [10, Theorem 6.4.4] Let C be a linear cyclic code over F4 with
parameters [n, n−12 ]. Then C is Hermitian self-orthogonal if and only if C is an
even-like duadic code with the multiplier µ−2.

Theorem 5. [10, Section 6.6.1] Let p be an odd prime. The even-like QR codes
of length p over F4 are Hermitian self-orthogonal if and only if p ≡ −1 (mod 8)
or p ≡ −3 (mod 8).



LetD be an odd-like duadic code with the even-like subcode C. The minimum
odd-like weight of D is defined by

do = min{wt(v) : v ∈ D \ C}.

Several minimum distance conditions for duadic and QR codes are provided
below. Let d(C) denote the minimum distance of C.

Theorem 6. [10, Theorems 6.5.2, 6.6.6, and 6.6.22] Let D be an odd-like duadic
code of length n over Fq. Let do be the minimum odd-like weight of D. Then

1. d2o ≥ n.
2. If the splitting is given by µ−1, then d2o − do + 1 ≥ n.
3. Furthermore, if n is a prime number and D is a QR code, then

a. d(D) = do.
b. If q = 2 or q = 4 and n ≡ −1 (mod 8), then d(D) ≡ 3 (mod 4).

An extended version of this result is provided in [10, Theorems 6.5.2, 6.6.22].
In general, although the square root bound is a nice theoretical result, our com-
putations given in Table 1 show that it does not provide a tight bound for the
minimum distance.

We conclude this section with some useful information regarding when a
splitting over F4 is given by µ−2, or in other words when a duadic code over F4

is Hermitian self-orthogonal by Theorem 4.

Theorem 7. [10, Theorems 6.4.9 and 6.4.10] Let p be an odd prime number.

1. If p ≡ −1 (mod 8) or p ≡ −3 (mod 8), then every splitting of Zp over F4 is
given by µ−2.

2. If p ≡ 3 (mod 8), then there is no splitting of Zp given by µ−2 over F4.
3. If p ≡ 1 (mod 8), then µ−2 may or may not give a splitting of Zp over F4.

Moreover, if µ−2 and µ−1 give the same splitting of Zp over F4, then p ≡ ±1
(mod 8). In particular, if p ≡ −1 (mod 8), then µ−2 and µ−1 give the same
splitting of Zp over F4.

2 A new class of good binary quantum codes

A 0-dimensional quantum code with length n has parameters [[n, 0, d]]. Such
a quantum code represents a single quantum state capable of correcting any
(d − 1)/2 errors. In practice, 0-dimensional quantum codes can be useful for
example in testing whether certain storage locations for qubits are decohering
faster than they should [3]. Moreover, higher-dimensional quantum codes can be
constructed by applying Theorem 2 part 1 to a 0-dimensional quantum code.

In this section, we provide a new infinite family of 0-dimensional quantum
codes using duadic codes over F4. Our construction targets nearly self-orthogonal
duadic codes and also bounds the minimum distance of the constructed quantum
code using minimum distances of an odd-like and an even-like duadic code.



Through this section, n always is a positive odd integer. For any integer a such
that gcd(a, n) = 1, we denote the multiplicative order of a modulo n by ordn(a).

Constructions of 1-dimensional quantum codes can be found in the literature.
One such construction is provided below which is obtained by applying the CSS
construction to binary duadic codes.

Theorem 8. [1, Theorems 4 and 10] Let n be a positive odd integer. Then there
exists a quantum code with parameters [[n, 1, d]], where d2 ≥ n. If ordn(2) is odd,
then d2 − d+ 1 ≥ n.

Moreover, Guenda in [8] proved that the distance bound d2 − d + 1 ≥ n in
Theorem 8 is still valid when ordn(4) is odd. She also found the following new
family of quantum codes when ordn(4) is even.

Theorem 9. [8, Theorem 16] Let n = pm be a prime power power, gcd(p, 2) =
1, and ordn(4) be even. Then there exists an [[n, 1, d]] quantum code with d2 ≥ n.

For u, v ∈ Fn
4 let 〈u, v〉h denote their Hermitian inner product. The next

theorem gives some useful information about the weights in certain even-like
and odd-like quaternary duadic codes.

Theorem 10. Let n be a positive odd integer and Co be an odd-like duadic code
of length n with the multiplier µ−2 over F4. Let Ce be the Hermitian dual of the
code Co. Then all vectors in Ce have even weights and all vectors in Co \Ce have
odd weights.

Proof. First note that by Theorem 4, Ce ⊂ Co and Ce is Hermitian self-orthogonal.
Let v = (v0, v1, · · · , vn−1) be an arbitrary codeword of Ce. Then

〈v, v〉h =

n−1∑
i=0

v3i = 0.

Since Ce is self-orthogonal, wt(v) is even. This proves the first part.
Let j be the all-ones vector of length n and H be the subspace spanned

by j over F4. Now, toward a contradiction, suppose that Co \ Ce has an even
weight vector. By Theorem 3 part 6, Co = Ce ⊕H. Thus there exists 0 6= a =
(a0, a1, · · · , an−1) ∈ Ce such that j+ a has an even weight. Let wt(a) = k1 + k2,
where k1 is the number of coordinates of a equal to 1 and k2 is the number of
coordinates equal to ω or ω2, where ω is a primitive cube root of unity in F4.
Note that wt(j + a) = n− k1 and the facts that n is odd and j + a has an even
weight imply that k1 is odd. Moreover, since a ∈ Ce has an even weight, k2 must
be odd too. Now we have

0 = 〈a, j〉h =

n−1∑
i=0

ai = k1 +mω + (k2 −m)ω2 (1)

for some integer m. Since 1 = ω+ω2 and k1 = 1 over F4, (1) equals to (m+1)ω+
(k2 −m+ 1)ω2. However, this is a contradiction as m+ 1 and k2 −m+ 1 have
different parities modulo 2 which implies that the right side of (1) is non-zero.
So Co \ Ce cannot contain an even weight codeword. �



The nearly self-orthogonality of a linear code C with respect to the Hermitian
inner product is defined by e = dim(C)−dim(C∩C⊥h) in [14]. Next, we classify
all the odd-like duadic codes having the nearly self-orthogonality e = 1 with
respect to the Hermitian inner product.

Theorem 11. Let C be an odd-like duadic code. Then C has the nearly self-
orthogonality parameter e = 1 if and only if C has multiplier µ−2.

Proof. First suppose that µ−2 is a multiplier of C. Thus there exists a splitting
of Zn given by µ−2 in the form (S1, S2) such that S1 is the defining set of C.
The code C⊥h has the defining set Zn \ (−2S1) = Zn \ S2 = S1 ∪ {0}. Hence
C⊥h is the even-like duadic subcode of C and

e = dim(C)− dim(C ∩ C⊥h) = 1.

Conversely let (S′1, S
′
2) be a splitting of Zn given by µa and C be an odd-like

duadic code with the defining set S′1 and assume that e = 1. Then

e = dim(C)− dim(C ∩ C⊥h) = n− |S′1| −
(
n− |S′1 ∪

(
Zn \ (−2S′1)

)
|
)

= |S′1 ∪
(
Zn \ (−2S′1)

)
| − |S′1|.

(2)

Now if −2S′1 6= S′2, then {0, s} ⊆ Zn \ (−2S′1) for some s ∈ S′2. Thus (2)
implies that e ≥ 2 which is a contradiction. Therefore, −2S′1 = S′2 and µ−2 is a
multiplier of C. �

Next, we use the following construction of quantum codes from linear codes
which is called nearly self-orthogonal construction of quantum codes [14]. This
construction extends a linear code, which is not necessarily Hermitian self-
orthogonal, to a Hermitian self-orthogonal linear code of a larger length. The
next theorem states a slight modification of this construction.

Theorem 12. Let C be an [n, n− k] linear code over F4 and e = n−k−dim(C∩
C⊥h). Then there exists a quantum code with parameters [[n+ e, 2k− n+ e, d]],
where

d ≥ min{d(C⊥h), d(C + C⊥h) + 1}.

Proof. The result follows from applying Theorem 2 of [14] to the code C⊥h which
is an [n, k] linear code over F4.

Now, we state our main result of this section which provides a construction
of a new family of 0-dimensional quantum codes.

Theorem 13. Let n be a positive odd integer and Co be an odd-like duadic code
of length n with the multiplier µ−2 over F4. Then there exists a binary quantum
code with parameters [[n+ 1, 0, d]], where

1. d ≥ min{d(Ce), d(Co) + 1}, where Ce is the even-like subcode of Co.
2. d is even.



3. If d(Co) is odd, then d ≥
√
n + 1. Moreover, if also µ−1 is a multiplier for

Co, then d2 − 3(d− 1) ≥ n.

Proof. Let (S1, S2) be a splitting of Zn given by µ−2 over F4 and Co and Ce be
the odd-like and even-like duadic code with the defining sets S1 and S1 ∪ {0},
respectively. By Theorem 11, the code Co has the nearly self-orthogonality e = 1.

The code Co has parameters [n, n − n−1
2 ]. Now applying the quantum con-

struction given in Theorem 12 to Co results in an Hermitian self-dual linear
code Q which is also a quantum code with parameters [[n + 1, 0, d]], where
d ≥ min{d(Ce), d(Co) + 1}. The facts that Q is linear and Hermitian self-dual
imply that all weights in Q are even, as was shown in the proof of Theorem 10.

Note that Theorem 10 implies that if d(Co) = do is odd, then do < d(Ce).
Thus do satisfies the square root bound provided in Theorem 6. The facts that
d ≥ do + 1 and do ≥

√
n show that d ≥

√
n+ 1.

Finally, if the same splitting is given by µ−1 and d(Co) = do is odd, then
by Theorem 6, d2o − do + 1 ≥ n. Now combining d − 1 ≥ do with the previous
inequality gives the result. �

The lower bound that we provided in case 1 of Theorem 13 appears to be
very good and almost all of our computational results rely on this lower bound.

Restricting the code lengths to prime numbers in the form p ≡ −1 (mod 8)
or p ≡ −3 (mod 8) leads to an infinite family of 0-dimensional quantum codes
of length p+ 1.

Corollary 1. Let p be a prime number such that p ≡ −1 (mod 8) or p ≡ −3
(mod 8). Then there exists a [[p+ 1, 0, d]] quantum code with an even minimum
distance d and

d ≥ min{d(Ce), d(Co) + 1},

where Co is an odd-like duadic code of length p and Ce is the even-like subcode
of Co. If Co is also a QR code, p ≡ −1 (mod 8), and d = d(Co) + 1, then d ≡ 0
(mod 4).

Proof. The proof follows from Theorems 13 and Theorem 7 part 1. The last fact
about the minimum distance follows from Theorem 6 part 3b which implies that
d(Co) ≡ 3 (mod 4). �

For each positive odd integer n, we have ordn(4) | ordn(2) and if ordn(2)
is odd, then ordn(4) = ordn(2). In the latter case, the binary and quaternary
cyclotomic cosets modulo n are the same. Thus the binary and quaternary duadic
codes have the same defining sets. In this special case, the following result helps
to compute the minimum distance of quaternary duadic codes much faster by
only using the binary duadic code with the same defining set.

Theorem 14. [15, Theorem 4] Let C be a quaternary linear code of minimum
distance d which is generated by a set of binary vectors. Then the binary linear
code generated by the same set of generators has the minimum distance d.



Another advantage of the above result is that binary duadic codes have been
studied extensively in the literature. For instance, the exact or probable mini-
mum distance of all binary duadic codes of length n ≤ 241 are determined in
[19], [17], and [10, Section 6.5].

3 Minimum distance lower bound for cyclic codes using
the fixed subcodes

In general, computing the true minimum distance for linear codes is NP-hard
[22] and very difficult for linear codes with large lengths and dimensions. In
[12], the authors used the fixed subcode by the action of multipliers to find an
upper bound (or even the exact value) for the minimum distance of certain linear
cyclic codes. In this section, we use this idea to bound the minimum distance of
odd-like duadic codes.

Proposition 1. Let C ⊆ Fn
4 be a linear cyclic code of an odd length n, with a

symmetric defining set, and Cf be the fixed subcode of C under the action of µ−1
(as the permutation on Zn). Then d(Cf )/2 + 1 ≤ d(C).

Proof. Let v be a minimum weight vector in C. Since C is cyclic, without loss of
generality, we assume that v has a non-zero entry in the 0th position (coordinate
indices are from Zn). If v is fixed by the map µ−1, then d(Cf ) = d(C). Otherwise
v + µ−1(v) is an element of Cf and d(Cf ) ≤ wt(v + µ−1(v)) ≤ 2d(C) − 2 since
both v and µ−1(v) have the same 0th entry. Hence d(Cf )/2 + 1 ≤ d(C). �

In some examples, the minimum distance of the fixed subcode is computed
much faster, while the minimum distance computation for the original duadic
code required a much longer time. We use this property and the result of Propo-
sition 1 to prove the existence of new quantum codes from the constructions
given in Theorem 13.

4 Numerical results

The constructions given in Section 2 lead to many new quantum codes with
minimum distances much higher than the previously best-known codes. In some
cases the increase is by as much as 10. Table 1 shows parameters of such quantum
codes. In the table, the first two columns show the length and the coset leaders
of each odd-like duadic code. The third column records whether the original
duadic code is a QR code or not.

In Table 1, we used the probable minimum distances provided in [10, Section
6.5] for duadic codes of length 217, 233, and 239, where the binary and quater-
nary generator polynomials are the same for all these three codes. The probable
minimum distance d for each of these values is denoted by dap in the table. All
the other minimum distances given in the table are the true minimum distance
obtained from the bound given in Theorem 13 part 1.



When the exact value of minimum distance is not known, its lower and upper
bounds are separated by a dash. Some of the minimum distance upper bounds
presented in Table 1 are computed using functions implemented in Magma [2]
to attack the McEliece cryptosystem.

The “source” column in the table provides information about the way the
minimum distance of each code is computed. Most minimum weights are com-
puted by the computer algebra system Magma [2], and a reference for each
remaining one is provided in the source column.

Finally, the last column shows the minimum distance of the current best
known quantum code of the same length and dimension as shown in [6]. In cases
where the code that we list in our table has a strictly higher minimum distance
than the current best known quantum code shown in [6], we list the distance of
our code in boldface in the last column.

It should be noted that we can apply the secondary construction given in
Theorem 2 part 2 to the codes listed in Table 1 and produce many more record-
breaking codes. For instance:

– the quantum code [[224, 0, 32]] generates 9 new quantum codes with param-
eters [[224− i, 0, 32− i]] for each 1 ≤ i ≤ 9.

– the quantum code [[200, 0, 32]] generates 7 new quantum codes with param-
eters [[200− i, 0, 32− i]] for each 1 ≤ i ≤ 7.

– the quantum code [[240, 0, 32]] generates 6 new quantum codes with param-
eters [[240− i, 0, 32− i]] for each 1 ≤ i ≤ 6.

– the quantum code [[192, 0, 28]] generates 5 new quantum codes with param-
eters [[192− i, 0, 28− i]] for each 1 ≤ i ≤ 5.

The above codes obtained from secondary constructions are not listed in Table 1.



length coset leaders type mod 8 parameters source best distance

n = 5 1 QR −3 [[6, 0, 4]] Magma 4
n = 7 1 QR −1 [[8, 0, 4]] Magma 4
n = 13 1 QR −3 [[14, 0, 6]] Magma 6
n = 17 1, 3 1 [[18, 0, 8]] Magma 8
n = 23 1 QR −1 [[24, 0, 8]] Magma 8
n = 29 1 QR −3 [[30, 0, 12]] Magma 12
n = 31 1, 5, 7 QR −1 [[32, 0, 8]] Magma 10
n = 37 1 QR −3 [[38, 0, 12]] Magma 12
n = 41 1, 3 1 [[42, 0, 12]] Magma 12
n = 47 1 QR −1 [[48, 0, 12]] Magma 14
n = 49 1, 7 1 [[50, 0, 4]] Magma 14
n = 53 1 QR −3 [[54, 0, 16]] Magma 16
n = 61 1 QR −3 [[62, 0, 18]] Magma 18
n = 71 1 QR −1 [[72, 0, 12]] Magma 18
n = 73 1, 3, 5, 13 1 [[74, 0, 10]] Magma 18
n = 79 1 QR −1 [[80, 0, 16]] Magma 20
n = 89 1, 3, 5, 13 1 [[90, 0, 12]] Magma 20
n = 97 1, 5 1 [[98, 0, 18]] Magma 22
n = 101 1 QR −3 [[102, 0, 22]] Magma 22
n = 103 1 QR −1 [[104, 0, 20]] [10] & Theorem 14 20
n = 109 1, 3, 9 QR −3 [[110, 0, 22]] Magma 26
n = 113 1, 3, 9, 10 1 [[114, 0, 24]] Magma 24
n = 119 1, 2, 3, 6, 7, 21, 51 −1 [[120, 0, 20]] Magma 20
n = 127 1, 9, 11, 13, 15, QR −1 [[128, 0, 20]] [19] & Theorem 14 22

19, 21, 31, 47
n = 137 1, 3 1 [[138, 0, 20− 32]] Magma 20
n = 145 1, 3, 5, 7, 11, 29 1 [[146, 0, 18− 32]] Magma 18
n = 149 1 QR −3 [[150, 0, 18− 30]] Magma 18
n = 151 1, 3, 7, 11, 15 −1 [[152, 0, 24]] [4] & Theorem 14 24
n = 155 1, 2, 3, 5, 6, 9, 11, 3 [[156, 0, 18− 20]] Magma 18

15, 25, 31
n = 157 1, 3, 9 QR −3 [[158, 0, 20− 36]] Magma & Proposition 1 20
n = 161 5, 11, 35, 69 1 [[162, 0, 16]] Magma & Theorem 14 20
n = 167 1 QR −1 [[168, 0, 24]] [21] & Theorem 14 24
n = 173 1 QR −3 [[174, 0, 20− 36]] Magma & Proposition 1 21
n = 181 1 QR −3 [[182, 0, 22− 38]] Magma & Proposition 1 22
n = 191 1 QR −1 [[192, 0, 28]] [20] & Theorem 14 28
n = 193 1, 5 1 [[194, 0, 20− 42]] Magma 22
n = 197 1 QR −3 [[198, 0, 22− 40]] Magma & Proposition 1 22
n = 199 1 QR −1 [[200, 0, 32]] [20] & Theorem 14 32
n = 203 2, 3, 7, 29 3 [[204, 0, 14− 24]] Magma 22
n = 205 1, 3, 5, 7, 9, 11, 15, −3 [[205, 0, 20− 36]] Magma & Proposition 1 20

17, 21, 31, 41
n = 217 Many codes 1 [[218, 0, 24ap]] [10] & Theorem 14 24
n = 221 1, 2, 3, 5, 6, 9, 10, −3 [[222, 0, 14− 36]] Magma 20

13, 17, 18, 39
n = 223 1, 9, 19 QR −1 [[224, 0, 32]] [11] & Theorem 14 32
n = 229 1, 3, 5 QR −3 [[230, 0, 14− 48]] Magma 22
n = 233 1, 3, 7, 27 1 [[234, 0, 30ap]] [10] & Theorem 14 30
n = 235 1, 2, 5, 47 3 [[236, 0, 14− 24]] Magma 20
n = 239 1 QR −1 [[240, 0, 32ap]] [10] & Theorem 14 32
n = 241 1, 3, 5, 7, 9, 11, 1 [[242, 0, 14− 56]] Magma 20

13, 21, 25, 35

Table 1. Parameters of self-dual quantum codes obtained from duadic codes.
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