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Abstract. We consider the class of linear antipodal two-weight rank-
metric codes and discuss their properties and characterization in terms of
t-spreads. It is shown that the dimension of such codes is 2 and the min-
imum rank distance is at least half of the length. We construct antipodal
two-weight rank-metric codes from certain MRD codes. A complete clas-
sification of such codes is obtained, when the minimum rank distance is
equal to half of the length.
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1 Introduction

Let q be a prime power and let Fqm be the field extension of degree m over the
finite field Fq. For a positive integer n, the rank of an element c = (c1, . . . , cn) in
Fnqm is defined by rank(c) = dimFq

〈c1, . . . , cn〉Fq
, where 〈c1, . . . , cn〉Fq

is the Fq-
subspace of Fqm generated by the ci’s. The function “rank” induces a metric dr
on Fnqm where dr(c, c

′) = rank(c− c′) for c, c′ in Fnqm . An [n, k, d] (linear) rank-
metric code C over Fqm/Fq is an Fqm-linear subspace of Fnqm of dimension k such
that minc∈C\{0} rank(c) = d. An [n, k, d] linear rank-metric code over Fqm/Fq is
called an antipodal two-weight or ATW if d 6= n, any nonzero codeword has rank
either d or n and there is at least one codeword of full rank n.

Linear codes with few distinct weights are important in coding theory, both
from practical and theoretical point of view. For codes with Hamming metric,
the constant weight codes i.e. codes where all the nonzero codewords have same
weight and the two-weight linear codes have been studied extensively. In [3],
Bonisoli gives a characterization of the constant weight codes. The class of two-
weight linear Hamming metric codes has been investigated by Delsarte [5]; see
[4] for a systematic exposition. The classification of the subclass of ATW linear
codes with Hamming metric are obtained in [7].

We are interested in the q-analogues of some of these results. For linear rank-
metric codes, the class of constant rank weight codes are completely classified
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in [9] following a geometric approach. It is proved that, up to equivalence, there
is only one non-degenerate constant rank weight code if the code has dimension
at least 2. In this article we consider the class of ATW rank-metric codes. Using
the classification of constant rank weight codes, we show that the dimension of
such codes is 2 and the minimum distance d must be at least n

2 . We provide
an equivalent characterization of ATW rank-metric codes in terms of t-spreads,
more precisely, as t-subspreads of Desarguesian t-spreads induced by q-systems
associated to the codes. It is proved that, up to equivalence, there exists only one
ATW code for the case d = n

2 and a complete classification of such codes is also
obtained. For the case of d > n

2 , we get partial results regarding the classification.
We construct ATW rank-metric codes using MRD codes of suitable parameters.

The article is organized as follows. In the next section, we collect some pre-
liminaries about notions such as rank-metric codes and t-spreads. In Section 3,
we derive some properties of the ATW rank-metric codes and t-spreads and es-
tablish a relation between these two objects. Section 4 deals with classification
and construction of ATW rank-metric codes.

2 Preliminaries

Throughout we use a · b to denote the usual dot product of two vectors a,b.

2.1 Rank-metric codes

In [5], it was shown that for any [n, k, d]-rank metric code over Fqm/Fq, d ≤
n − k + 1. If d = n − k + 1, then the code is called a maximum rank distance
(MRD) code.

Following the definition of [8], two rank-metric codes C and C′ over Fqm/Fq
are called equivalent if C = αC′M for some α ∈ F×qm and M ∈ Fn×nq invertible,
where C′M = {cM : c ∈ C′}. It is equivalent to saying that the corresponding
generator matrices G and G′ satisfy G = G′M.

A rank-metric code C is non-degenerate if the columns of its generator matrix
G are linearly independent over Fq. Otherwise, if C is degenerate, then C is equiv-
alent to a code {(c|0) : c ∈ C′} where C′ is non-degenerate. Therefore throughout
this paper, our code is assumed to be non-degenerate unless otherwise specified.

In [9], rank-metric codes are described in terms of called q-systems.

Definition 1 (q-system). Let k, n be positive integers such that k ≤ n. An
[n, k] q-system X in Fkqm is an Fq-subspace of Fkqm of dimension n. If {ci ∈
Fkqm : 1 ≤ i ≤ n} are an Fq-basis of X, then we write X = 〈c1, . . . , cn〉Fq

.

Let G be the generator matrix of a non-degenerate [n, k] rank-metric code C over
Fqm/Fq. The Fq space generated by the columns of G is an [n, k] q-system and
in [9], it is shown that this gives a one-to-one correspondence between equiva-
lence classes of q-systems and rank-metric codes. The key point is the geometric
interpretation of rank of a codeword which we explain below.
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Lemma 1. For a vector c ∈ Fnqm , rank(c) = n− dimFq
Kerφc where

φc : Fnq −→ Fqm is given by a 7−→ c · a.

Proof. It is a straightforward consequence of the rank-nullity theorem. ut

Let C be an [n, k] rank-metric code over Fqm/Fq. For any codeword c ∈ C,
c = xcG for some xc ∈ Fkqm . Then c defines a unique hyperplane Hc of Fkqm
given by the kernel of the map ψc defined as follows

ψc : Fkqm −→ Fqm (1)

e 7−→ xc · e.

Conversely, a hyperplane H of Fkqm defined by a vector x ∈ Fkqm defines a code-
word c = xG.

Lemma 2. Let C be an [n, k] rank-metric code over Fqm/Fq and let X be the
q-system corresponding to a generator matrix G of C. Then for any c ∈ C,

rank(c) = n− dimFq
(X ∩Hc) , where (2)

Hc = Ker ψc is considered as an Fq-subspace of Fkqm of dimension m(k − 1).

Proof. For e ∈ (X ∩Hc), xc · e = 0 and e = GaT for some a ∈ Fnq . Note
that a is unique since C is non-degenerate. This implies that c ·a = 0. Therefore,
e ∈ X∩Hc corresponds to a unique element a ∈ Ker φc. Also, the same argument
backward shows that any element of Kerφc corresponds to a unique element of
X ∩Hc. Hence |X ∩Hc| = |Kerφc| and the result follows from Lemma 1. ut

The geometric approach helps to completely classify the constant weight
rank-metric codes. We recall the classification below.

Definition 2. [9, Definition 11] Let X be the Fq-vector space Fkqm of dimension
mk. A Hadamard rank-metric code H1(q,m, k) is an [mk, k,m] linear code with
generator matrix where the columns are made of Fq-basis of X.

Theorem 1. [9, Theorem 12] Let C be an [n, k, d]-non-degenerate constant weight
linear rank metric code over Fqm/Fq. Then

(a) for k = 1, C = 〈(a1, . . . , an)〉Fqm
where rank(a1, . . . , an) = d, and

(b) for k > 1, C is a [mk, k,m]-Hadamard rank-metric code H1(q,m, k).

2.2 t-Spreads

Spreads are widely studied objects in finite geometry [1,6,2]. Here we collect the
relevant basic notions regarding spreads.

Definition 3. A t-spread is a pair (V,Σ) where V is a vector space of dimension
n over Fq and Σ is a set of subspaces of V of dimension t such that

⋃
S∈Σ S = V

and for all S1 6= S2 ∈ Σ, S1 ∩ S2 = {0}. If the ambient space V is clear from
the context, we simply write Σ to denote the t-spread.
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Whenever we simply write “spread”, we mean that (V,Σ) is a t-spread where
t = (dimFq

V )/2. The space V has a t-spread if and only if t-divides n [10].
Two spreads Σ1, Σ2 of V are called equivalent if there exists a collineation

α of ΓL(V ) such that Σα
1 = Σ2.

Suppose n = lt. Any r-dimensional Fqt-subspace of Flqt is an rt-dimensional

Fq-subspace of Flqt . Now, let H be the set of all one dimensional subspaces of

Flqt and thus #H = qn−1
qt−1 . These 1-dimensional Fqt-subspaces are considered as

t-dimensional Fq-subspaces of Flqt ' Ftlq = Fnq and they intersect trivially. Hence,

up to isomorphism, H is a set of qn−1
qt−1 non-intersecting t-dimensional subspaces

of Fnq .

Definition 4 (Desarguesian t-spread). Let Dl,t,q be the t-spread of Flqt , where

Dl,t,q is the set of t-dimensional subspaces of Flqt defined by the 1-dimensional

Fqt-subspaces of Flqt . A t-spread Σ is called Desarguesian if Σ is equivalent to
Dl,t,q for some r, t and q.

Definition 5. Let V be an Fq-vector space. Let (V,Σ) be a t-spread in V . For
a subspace W of V , the projection of Σ onto W is the set ΣW = {S ∩W : S ∈
Σ}\{{0}}. The pair (W,ΣW ) is called a subsystem of (V, S).

For any arbitrary subspace W ⊂ V , the projection ΣW is not necessarily a
t′-spread. In fact the dimension of the elements of ΣW can be distinct.

Definition 6. Let (V,Σ) be a t-spread in V and let (W,ΣW )) be a subsystem
of (V, S). If (W,SW ) is itself t′-spread for some t′ ≤ t, then it is called a t′-
subspread induced by (V, S) on W . If a t′-subspread is a spread, then it is simply
called a subspread.

These generalize the notion of subspreads of [1, Definition 4.4.1] to general t.

3 Antipodal two-weight rank-metric codes and t-spreads

In this section, we discuss properties of the antipodal two-weight rank-metric
codes and t-spreads and establish a relation between these two objects.

3.1 Antipodal two-weight (ATW) rank-metric codes

An [n, k, d] ATW rank-metric code over Fqm/Fq, we must have n ≤ m because
it has a codeword of full rank n. We give a first description of the form of the
generator matrix of an ATW rank-metric code. As we progress, we will refine
this form.

Lemma 3. Let C be a non-degenerate [n, k, d] ATW rank-metric code over Fqm/Fq.
Then C is equivalent to a rank-metric code with a generator matrix of the form

G =

(
c1 c2
A 0

)
, where
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(i) c1 ∈ Fn−rqm , c2 ∈ Frqm for some positive integer r and rank(c1|c2) = n.

(ii) A ∈ F(k−1)×(n−r)
qm is a generator matrix of a non-degenerate constant weight

rank-metric code.

Proof. Since C is antipodal, there is a codeword c of full rank n. After row reduc-

tions, we can have a generator matrix of the following form G′ =

(
c′ α
A′ 0(k−1)×1

)
,

where c′ ∈ Fn−1qm , α ∈ F×qm such that c = (c′|α) and A′ ∈ F(k−1)×(n−1)
qm . Since the

subcode C′ ⊂ C generated by
[
A′|0(k−1)×1

]
can’t have a codeword of rank n, then

it must be a constant rank weight code with minimum distance d. By a proper
invertible matrix M ∈ Fn×nq , we can write

[
A′|0(k−1)×1

]
M =

[
A|0(k−1)×r

]
,

where 1 ≤ r ≤ n − 1 and A ∈ F(k−1)×(n−r)
qm is a generator matrix of a non-

degenerate constant weight rank-metric code. Then G := G′M has the desired
form and the codeword (c1|c2) = (c′|α)M has rank n since M is invertible. ut

It is clear that any two-weight rank-metric code cannot be of dimension 1.
Now, following Theorem 1, we can say that the matrix A in the decomposition of
G in Lemma 3 generates either a code of dimension 1 or a Hadamard rank-metric
code. And the later case leads to the following result.

Theorem 2. There is no [n, k, d] ATW rank-metric code over Fqm/Fq of di-
mension k ≥ 3.

Proof. Let C be an [n, k, d] ATW rank-metric code with of dimension k ≥ 3 and

generator matrix G. By Lemma 3, we can assume that G =

(
c1 c2
A 0

)
, where

A is a generator matrix of a non-degenerate constant weight rank-metric code
of dimension k − 1 ≥ 2 and minimum distance d. Also, following Theorem 1,
A is a generator matrix of a Hadamard code H1(q,m, k − 1). But that implies
m = d < n ≤ m which is a contradiction. ut

So any ATW rank-metric codes are only of dimension 2. The next lemma
gives a restriction on the distance of the code.

Lemma 4. For any [n, 2, d] ATW rank-metric code, the minimum distance d is
at least n/2.

Proof. Let C be an [n, 2, d] ATW rank-metric code. Following Lemma 3, C is

equivalent to a code C′ with a generator matrix G =

(
c1 c2
c3 0

)
, where c1, c3 ∈

Fdqm , c2 ∈ Fn−dqm , rank(c3) = d and rank(c1|c2) = n. After row reduction, G can

be transformed into G′ =

(
c′1 c2
c3 0

)
, where the first entry of c′1 is zero and two

rows have rank d. Now rank(c1|c2) = n implies that c2 has full rank n−d. Since
rank(c2) ≤ rank(c′1|c2) = d, then d ≥ n− d or d ≥ n/2. ut

The following example gives an ATW rank-metric code with d = n/2. Later
we show that any codes of the same parameters much be equivalent to this one.
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Example 1. Let Fqd = 〈α1, . . . , αd〉Fq
be an extension of degree d over Fq. Then

the matrix G =

(
0 0 . . . 0 α1 α2 . . . αd
α1 α2 . . . αd 0 0 . . . 0

)
generates a non-degenerate ATW

[n = 2d, 2, d] rank-metric code C over F/Fq, where F is any proper extension of
Fqd . For the proof, we know that all codewords of C are of the form (a1, a2)G,

where either a2a
−1
1 ∈ Fq or a2a

−1
1 /∈ Fq. The first case gives us a codeword of

rank d whereas the second case gives us a codeword of rank n.

3.2 Some properties of t-spreads

Here we prove some properties of t-spreads that will be useful in later sections.

Lemma 5. Let (Σ,V ) be a t-spread of V where V is a vector space over Fq of
dimension n = tl. For any integer 1 < r < l, if {S1, S2, . . . , Sr} are distinct
subspaces in Σ such that dimFq S1 + · · ·+Sr = tr, then there is an element Sr+1

in Σ such that dimFq S1 + · · ·+ Sr+1 = t(r + 1).

Proof. Suppose that for any Sr+1 6= Si, i = 1, . . . , r, dimFq
S1 + · · · + Sr+1 <

t(r+1). Hence Sr+1∩(S1+· · ·+Sr) contains a non-zero vector. Since the elements

of a t-spread pairwise intersect trivially, we get #(S1 + · · ·+Sr)\{0} ≥ qn−1
qt−1 −r.

Therefore qtr − 1 ≥ qn−1
qt−1 − r and thus qt(r+1) − qtr ≥ qn − 1 − (r − 1)(qt − 1).

Therefore qn − qtr ≥ qn − 1 − (r − 1)(qt − 1) (As qn ≥ qt(r+1), for r + 1 ≤ l).
By simplifying, we get qtr − 1 ≤ (r − 1)qt and so qtr ≤ rqt, which leads to a
contradiction and hence the Lemma is proved. ut

Theorem 3. Suppose that V is a vector space of dimension n over Fq and let
n = tl. Let Σ be a t-spread of V . Then there are S1, . . . , Sl in Σ such that
V = S1 ⊕ S2 ⊕ · · · ⊕ Sl.

Proof. Choose S1 and S2 as any elements of Σ. By the definition of t-spreads,
S1 + S2 is a direct sum. The previous lemma says that we can increase it to
S1 ⊕ S2 ⊕ S3 and applying the lemma repetitively, we get the result. ut

3.3 Relation between ATW codes and t-spreads

We now give a relation between (n − d)-spreads and ATW rank-metric codes
with d ≥ n/2. The following lemma is obtained by using the same method as
used in classifying constant rank weight codes in [9].

Lemma 6. Let C be an [n, 2, d] ATW rank-metric code over Fqm/Fq with a
generator matrix G and let X be the q-system corresponding to G. If H be the
set of all hyperplanes of F2

qm , then we can partition H into H1 tH2 where

H1 = {H ∈ H : dimFq
H ∩X = n− d},H2 = {H ∈ H : dimFq

H ∩X = 0}. (3)
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Proof. Let c ∈ C be a nonzero codeword and let Hc be the corresponding hyper-
plane. Then Lemma 2 implies that Fq-dimension of H∩X is n−d if rank(c) = d
and 0 othwerwise. Since any hyperplane of F2

qm corresponds to some codewords,
we get the desired partition of H by considering H1 (resp. H2) to be the set of
hyperplanes corresponding to codewords of rank d (resp. n). ut

Proposition 1. Let C be an [n, 2, d] ATW rank-metric code over Fqm/Fq with a
generator matrix G and let X be the q-system corresponding to G. Let H be the
set of all hyperplanes of F2

qm and H1 = {H ∈ H : dimFq
H ∩X = n− d}. Then

|H1| = qn−1
qn−d−1 and thus the set Σ = {H∩X : H ∈ H1} defines an (n−d)-spread

(X,Σ) of X.

Proof. Lemma 6 implies H = H1 t H2 where H2 as in equation (3). Note that
the hyperplanes have pairwise trivial intersection. Therefore we can partition
the set F2

qm\{0} as

F2
qm\{0} =

( ⊔
H∈H1

H\{0}

)⊔( ⊔
H∈H2

H\{0}

)
, (4)

where H\{0} is the set of non-zero elements of H. Define the valuation v on F2
qm

by v(a) =

{
1 if a ∈ X,
0 otherwise,

and by abusing notation, v(S) =
∑

a∈S v(a) for any

subset S of F2
qm . Since all the unions in equation (4) are disjoint, then

v(F2
qm\{0}) =

∑
H∈H1

v (H\{0}) +
∑
H∈H2

v (H\{0}) ,

Now v(H\{0}) = qn−d − 1 for H ∈ H1, and v(H\{0}) = 0 if H ∈ H2. Further-
more v(F2

qm\{0}) = v(X\{0}). Therefore, qn−1 = |H1|(qn−d−1). The pairwise
trivial intersection of elements of Σ implies that Σ is an (n− d)-spread. ut

Corollary 1. If C is an [n, 2, d] ATW rank-metric code, then n− d divides n.

Proof. Proposition 1 implies that a q-system X has an (n − d)-spread Σ such

that |Σ| = qn−1
qn−d−1 and thus n− d divides n. ut

Theorem 4. Let C be an [n, 2, d] ATW rank-metric code. Suppose that n =
l(n − d), then C is equivalent to a rank-metric code with generator matrix G =
[G1| . . . |Gl], where the columns of each Gi’s belong to a hyperplane Hi and Hi’s
are pairwise distinct.

Proof. Proposition 1 says that X admits an (n − d)-spread. Then we choose
the columns of G from the decomposition in Theorem 3, where each block Gi

consists of a Fq-basis of Hi ∩X for Hi ∈ H1. ut

We have shown that ATW rank-metric codes define t-spreads in the q-system
X. The following theorem shows that these t-spreads satisfy a certain property.
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Theorem 5. Let C be an [n, 2, d] rank-metric code over Fqm/Fq generated by G
with the corresponding q-system X. Let ∆ be a Desarguesian m-spread on F2

qm .
The following assertions are equivalent.

(i) C is an ATW rank-metric code.
(ii) (F2

qm , ∆) induces an (n− d)-spread (X,∆X) of X.

Proof.(i) ⇒ (ii): Since C is an ATW rank-metric code, following Proposition 1
we know that ∆X = {X ∩ H : H ∈ H1} is an (n − d)-spread of X. Also,
from Definition 6 it follows that (X,∆X) is a (n− d)-subspread of (F2

qm , ∆).
(ii)⇒ (i): Suppose that (X,∆X) is an (n−d)-subspread of (F2

qm , ∆). Let H
be the set of all hyperplanes in F2

qm . Then from Definition 4 and Definition
6, it follows that an element of H intersects X is an Fq-space of dimension
either n− d or 0. From Lemma 2, we have that for any H ∈ H, H = Hc for
some c ∈ C and conversely, any c ∈ C defines a hyperplane Hc (two linearly
dependent codewords define the same hyperplane). Then Equation (2) in
Lemma 2 implies that the only possible rank for any non-zero codewords are
d, n. ut

In the following result, we give a condition for any general (n− d)-spreads of
Fnq to induce an [n, 2, d] ATW rank-metric codes.

Corollary 2. Let n,m, d be positive integers with d ≤ n ≤ m and let Σ be
an (n − d)-spread of Fnq . Let X ⊆ F2

qm be a q-system and suppose that G is a
(2 × n)-matrix whose columns consist of an Fq-basis of X. If for any S ∈ Σ,
GST = {GxT : x ∈ S} is contained in a hyperplane H of F2

qm and each different
S correspond to different H, then G generates an ATW rank-metric code.

4 Constructions

In Example 1 of Section 3.1 we have seen a construction of ATW rank-metric
codes. We construct ATW rank-metric codes for more general parameters using
suitable MRD codes.

Theorem 6. Let d, l,m, n be positive integers such that d ≤ n ≤ m, (n− d)|m,
and n = l(n − d). Suppose C be a non-degenerate [l, 2, l − 1] MRD code over
Fqm/Fqn−d with a generator matrix G. Fix a basis {a1, . . . , an−d} of Fqn−d over

Fq and let G̃ be the 2 × l(n − d) block matrix (G̃1| . . . |G̃l) where the (n − d)

columns of G̃i are given by {ajGi, j = 1, 2, . . . , n − d} with Gi being the i-

th column of G. Then G̃ generates an [n, 2, d] ATW rank-metric code C̃ over
Fqm/Fq.

Proof. We claim that if the codeword c = (c1, c2)G of C has rank weight l
(respectively, l − 1), then the codeword c̃ = (c1, c2)G̃ of C̃ has rank weight
l(n− d) (respectively, (l− 1)(n− d)). It is easy to see that if the claim is proved
then C̃ is an ATW [n, 2, d] code over Fqm/Fq.
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Proof of the claim: Let X (resp. X̃) be the q-system corresponding to the
generator matrix G (resp. G̃). It is crucial to note that the Fq-space X̃ and
the Fqn−d -space X are same as set. Now let the codeword c = (c1, c2)G of C
has rank weight l. Thus from equation (1), we get dimF

qn−d
Hc ∩ X = 0 and

hence, dimFq
Hc∩ X̃ = 0. Therefore, rank(c̃) = n−dimFq

Hc∩ X̃ = n. Similarly,
for the case when rank(c) = l − 1 we have dimF

qn−d
Hc ∩X = 1 (follows from

equation (1)). Then dimFq
Hc ∩ X̃ = dimFq

Hc ∩ X = n − d and therefore,
rank(c̃) = n− (n− d) = d. ut

The above theorem says that if X is a qn−d-system corresponding to an
[l, 2, l − 1] MRD code over Fqm/Fqn−d , then X is a q-system corresponding to

an ATW [n, 2, d] code C̃ over Fqm/Fq. We call the code C̃ the ATW rank-metric
code induced by the MRD rank-metric code C.
Corollary 3. Let d, l,m, n, be positive integers such that d ≤ n ≤ m, n =
l(n− d), and (n− d)|m. Let X be a q-system corresponding to an [n, 2, d] ATW
code C̃ over Fqm/Fq. Then C̃ is induced by an [l, 2, l − 1] MRD code C over
Fqm/Fqn−d if and only if X is also an Fqn−d-space.

It is natural to ask if all ATW rank-metric codes are induced by MRD codes as
shown in the previous construction. The answer is affirmative when d = n/2.

Theorem 7. Let C be an [n, 2, d = n/2] rank-metric code over Fqm/Fq. Then C
is an ATW rank-metric code if and only if d divides m and C is equivalent to a
code with generator matrix(

0 0 . . . 0 1 α2 . . . αd
1 α2 . . . αd 0 0 . . . 0

)
, such that 〈1, α2, . . . , αd〉Fq

= Fqd .

Proof. Following Theorem 4, we know that C has a generator matrix of the form
G = [G1|G2] where the columns of G1 (resp. G2) belong to a hyperplane H1

(resp. H2). For i = 1, 2, let xi ∈ F2
qm such that Hi = Ker ψci

where ci = xiG as

in Equation (1). Then C has another generator matrix G′ =

(
x1

x2

)
G =

(
0 e1

e2 0

)
,

where e1 and e2 both have rank d.
Without loss of generality we can assume that e1 = (1, α2 . . . , αd) and

e2 = (1, β2, . . . , βd) where αi, βi ∈ F×qm . Take the codeword (e2|e1), because the
first and second part both contain 1, then 0 < rank(e2|e1) < n and therefore,
rank(e2|e1) = d. Thus the βi’s are Fq-linear combination of the α′is and 1. Hence,

C is equivalent to a code with generator matrix G of the form G =

(
0 e1

e1 0

)
.

For i = 2, . . . , d, let c(i) = (e1|αie1). Because the first and second part of c(i)

contain αi, then 0 < rank(c(i)) < n and thus rank(c(i)) = d. This implies that
αiαj ∈ 〈1, α2, . . . , αd〉Fq

for all 2 ≤ i, j ≤ d. So the space 〈1, α2, . . . , αd〉Fq
is in

fact a subfield, say K, of Fqm with [K : Fq] = d and hence d | m. Therefore we
get the desired form of the generator matrix. For the converse, it follows from the
arguments in Example 1 that G1 generates a non-degenerate ATW rank-metric
codes. ut
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For d = n/2, we showed that the ATW rank-metric code essentially corre-
sponds to a Desarguesian spread (Fqn/2 , ∆).

Corollary 4. Let (F2
qm , ∆) be a Desarguesian spread. Let X ⊆ F2

qm be an Fq-
space of dimension n and suppose that (F2

qm , ∆) induces a subspread, i.e. n/2-
subspread, (X,∆X) of X, then (X,∆X) is a Desarguesian spread.

Proof. Since (X,∆X) is a subspread, then by definition, the elements of ∆X has
dimension n/2. Following Theorem 5, X defines an [n, 2, n/2] ATW rank-metric
code. Theorem 7 implies that each element S of ∆X is an Fqn/2 vector space. So
the induced subspread (X,∆X) is a Desarguesian spread of X. ut

Theorem 6 gives a construction of [n, 2, d] ATW rank-metric codes over
Fqm/Fq from suitable MRD codes over Fqm/Fqn−d . In fact, for the case d = n/2
this is the only way of constructing ATW rank-metric codes as proved in Theo-
rem 7. So it is natural to ask if this happens for the case when d > n/2? In other
words, are there any [n, 2, d] ATW rank-metric code which are not induced by
MRD codes? Equivalently, in terms of t-spreads, one may ask if a t-subspread
of a Desarguesian spread is again a Desarguesian t-spread.
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