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Abstract. Lifted codes are a class of evaluation codes attracting more
attention due to good locality and intermediate availability. In this work
we introduce and study quadratic-curve-lifted Reed-Solomon (QC-LRS)
codes, which is a class of bivariate evaluation codes and the codeword
symbols whose coordinates are on a quadratic curve form a codeword of a
Reed-Solomon code. We first develop a necessary and sufficient condition
on the monomials which form a basis of the code. Based on the condi-
tion, we give upper and lower bounds on the dimension and show that
the asymptotic rate of a QC-LRS code over Fq with local redundancy r
is 1−Θ(q/r)−0.2284. Moreover, we provide analytical results on the min-
imum distance of this class of codes and compare QC-LRS codes with
lifted Reed-Solomon codes by simulations in terms of the local recovery
capability against erasures. For short lengths, QC-LRS codes have better
performance in local recovery for erasures than LRS codes of the same
dimension.

Keywords: Lifted Codes · Reed-Solomon Codes · Quadratic Curves ·
Locality · Dimension.

1 Introduction

Lifted codes were introduced by Guo, Kopparty and Sudan [4] as evaluation
codes obtained from multivariate polynomials over finite fields. Informally, the
key property of these codes is that the restriction to any affine subspace of fixed
dimension of the evaluation space is a codeword of a fixed base code. A setting
of particular interest, referred to as lifted Reed-Solomon (LRS) codes, is given
by lifted codes where each 1-dimensional affine subspace is a codeword of an
RS code. This can be viewed as a generalization of the well-known Reed-Muller
codes. A surprising advantage of LRS codes is that they achieve much larger
asymptotic code rate as the field size grows compared to Reed-Muller (RM) code.
The dimension of LRS codes is analyzed via the number of good monomials, i.e.,
the number of multi-variate monomials that result in a codeword of the base code
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when evaluated on any fixed line. The linear span of these good monomials is
shown to generate the entire lifted code. The study of these codes was continued
in [14,6], where tight asymptotic bounds on the rate were derived.

The seminal paper [4] gave rise to a number of related concepts and code
constructions. The works [10,16,7] consider lifting of multiplicity codes [8], an-
other class of codes with good locality properties. Degree-lifted codes were in-
troduced in [2], where each codeword polynomial is constructed as the product
of the uni-variate polynomials in the base code with an additional constraint
on the total degree. A class of lifted codes based on code automorphisms was
introduced in [3]. Codes constructed from all bivariate polynomials, evaluated
on the Hermitian curve, such that the restriction to any line agrees with some
low-degree univariate polynomial on the points of the Hermitian curve inter-
sected with that line were analyzed in [12] and named Hermitian-lifted codes. A
variant of lifted codes that utilizes the trace operation to obtain binary codes
with good locality properties was introduced in [5] and coined wedge-lifted codes.
Thanks to the comments from an anonymous reviewer, we noticed that the re-
cent work [9] gave a more general definition of lifted codes with curves, which
is called weighted lifted codes. The QC-LRS code (Definition 1) studied in this
work is coincidentally identical to [9, Def. IV.1] with η = 2.

1.1 Main Contribution and Organization

All works mentioned above consider the restriction to linear subspaces or
code automorphisms. Our work provides a class of evaluation codes whose lo-
cal recovery sets correspond to a set of quadratic curves. The advantage of this
construction is that there is a much larger number of recovery sets for each code-
word symbol, however, these recovery sets do no longer (necessarily) intersect in
only one position. This work is devoted to the analysis of the rate and distance
of these codes, as well as their local recovery capability compared to LRS/RM
codes.

We first investigate the dimension of QC-LRS codes. Since QC-LRS codes are
evaluation codes, we analyze the dimension by first deriving the necessary and
sufficient condition on the good monomials, where we take similar approaches as
in [5], and then by showing that these good monomials form a basis of the code as
in [10]. By quantifying the bad monomials following the approach for LRS codes
from [6], we derive upper and lower bounds on the dimension of QC-LRS codes
over Fq with q being a power of two. The asymptotic rate of QC-LRS codes over
Fq with local redundancy r is shown to be 1 − Θ((q/r)−0.2284). The approach
in this paper gives a more precise estimation of the dimension than that in [9],
which studied a more general definition of lifted codes with curves of arbitrary
degree. To study the advantage of more local groups given by the new notion
of QC-LRS codes than LRS codes, we compare between LRS codes and QC-
LRS codes the failure probability of locally recovering codeword symbols from
erasures. The simulation results show that for the blocklength 64 and under the
same code dimension, QC-LRS codes have similar or better performance than
LRS codes.

The organization of this paper is as follows: Section 2 introduces the notations
used throughout the paper and some basics, which are required in the proofs of
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the main results. In Section 3 we formally define the QC-LRS codes and present
results on the dimension and distance. Due to the page limit, we omit some proofs
and we refer to the full version of this paper [11] for an extensive justification.
Section 4 presents the comparison on the failure probability of local recovery
from erasures by QC-LRS and LRS codes.

2 Preliminaries

Denote the set of integers {a, . . . , b} by [a, b] and by [b] if a = 1. A finite
field of size q is denoted by Fq. The integer ring of size q is denoted by Zq.
Let deg : Fq[x] → N be the degree function of univariate polynomials. For any

f =
∑q−1
i=0 fix

i, deg(f) = max{i|fi 6= 0}. For non-negative integers a, b ∈ N with
binary representations a = (a0, . . . , a`−1)2, b = (b0, . . . , b`−1)2, we say that a
lies in the 2-shadow of b, denoted by a 62 b, if ai 6 bi, ∀i ∈ [0, ` − 1]. The bit
a`−1 is the most significant bit in the binary representation of a. For a bi-variate
function f : F2

q → Fq and a set D ⊂ F2
q, let f |D denote the restriction of f to the

domain D. If D is the set of points corresponding to the roots in F2
q of a bi-variate

function φ : F2
q → Fq, i.e., D = {(x, y) ∈ F2

q | φ(x, y) = 0}, we denote by f |φ the

restriction of f to the curve φ. A bivariate function φ : F2
q → Fq is a quadratic

function or quadratic curve if it is in the form φ(x, y) = y+αx2 +βx+γ , where
α, β, γ ∈ Fq.

Define an operation (mod∗ q) that takes a non-negative integer and maps it
to an element in [0, q − 1] as follows

a (mod∗ q) :=


a, if a 6 q − 1

q − 1, if a (mod q − 1) = 0, a 6= 0

a (mod q − 1), else

It can be readily seen that if a (mod∗ q) = b, then xa = xb (mod xq − x) in
Fq[x].

Lemma 1 (Lucas’ Theorem [13]). Let p be a prime and a, b ∈ N be written
in p-ary representations a = (a0, . . . , a`−1)p, b = (b0, . . . , b`−1)p. Then(

a

b

)
=
∏̀
i=1

(
ai
bi

)
mod p .

If p = 2, then
(
a
b

)
= 1 if and only if b 62 a.

Lemma 2 (Combinatorial Nullstellensatz [1, Theorem 1.2]). Let F be an
arbitrary field, and let f(x1, . . . , xm) be a multivariate polynomial in F[x1, . . . , xm]
of degree deg(f) =

∑m
i=1 ti, where each ti is a non-negative integer, and suppose

the coefficient of
∏m
i=1 x

ti
i in f is nonzero. Then, if S1, . . . , Sm are subsets of F

with |Si| > ti, there are s1 ∈ S1, . . . , sm ∈ Sm so that

f(s1, . . . , sm) 6= 0.
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3 Quadratic-Curve-Lifted Reed-Solomon Codes

In this section, we first give a general definition of curve-lifted Reed-Solomon
codes and present our results on a specific class of codes, the QC-LRS codes,
with restriction to quadratic curves.

Definition 1 (Curve-Lifted Reed-Solomon Codes). Let q be a power of
2 and Φ be a set of bi-variate functions. A curve-lifted Reed-Solomon code is
defined by

Cq(Φ, d) := {f : F2
q → Fq | deg(f |φ) < d,∀φ ∈ Φ} .

In order to investigate the dimension of curve-lifted RS codes, we introduce the
good monomials4, which is a tool also used in studying LRS codes in [4,6].

Definition 2 ((Φ, d)∗-good monomial). Given a set Φ of bi-variate func-
tions, a monomial m(x, y) = xayb is (Φ, d)∗-good if deg(m|φ) < d, ∀φ ∈ Φ. The
monomial is (Φ, d)∗-bad otherwise.

In the following let Φ be the set of all quadratic functions5 over Fq, i.e.,

Φ := {φ(x, y) = y + αx2 + βx+ γ,∀α, β, γ ∈ Fq} (1)

and we present the results on QC-LRS codes.
The following Lemma 3 gives a necessary and sufficient condition such that

a monomial m(x, y) = xayb is (Φ, d)∗-good.

Lemma 3. Let q be a power of 2, Φ be the set of all quadratic functions over
Fq and a, b < q be integers. A monomial m(x, y) = xayb is (Φ, d)∗-good if and
only if

2i+ j + a (mod∗ q) < d, ∀i 62 b, j 62 b− i . (2)

3.1 Dimension of Quadratic-Curve-Lifted RS Codes

The first important result is that the dimension of the code is exactly the
number of good monomials, which we present in Theorem 1. In order to show
that, we first discuss in the following lemma a special case that will be excluded
in the proof of Theorem 1. Due to space limitations, we leave out the proof of
the lemma here and refer to the full version of this paper [11].

Lemma 4. Consider two monomials m1(x, y) = xq−1yb and m2(x, y) = yb with
0 6 b 6 q − 1 and a polynomial P (x, y) containing m1 and m2, i.e.,

P (x, y) = (ξ1x
q−1yb + ξ2y

b) + P ′(x, y)

where ξ1, ξ2 6= 0 and P ′(x, y) does not contain m1 or m2. Then, P is (Φ, d)∗-bad
for any d 6 q − 1.

Theorem 1 (Dimension is the number of good monomials). Let d 6
q− 1 and Φ be the set of all quadratic functions. The QC-LRS code Cq(Φ, d) has
dimension equal to the number of (Φ, d)∗-good monomials over Fq.
4 This is a short notation to easily address these monomials later. There is no bias on

the performance of the monomials.
5 This set is a subset of quadratic curves, which are often referred as conics in geom-

etry. This set is also identical to the set of affine η-lines defined in [9] with η = 2.



Quadratic-Curve-Lifted Reed-Solomon Codes 5

Proof. Assume a polynomial P containing (Φ, d)∗-bad monomials is (Φ, d)∗-good.
Let G and B be subsets of indices of all (Φ, d)∗-good and -bad monomials, re-
spectively (assuming the monomials are ordered according to some order). We
can write P as

P =
∑
c∈G

ξcx
acybc +

∑
c∈B

ξcx
acybc ,

with ξc ∈ Fq \ {0}. Restricting P to the quadratic curve φ : y = αx2 + βx+ γ is
the univariate polynomial

P |φ =
∑
c∈G∪B

ξcx
ac(αx2 + βx+ γ)bc

=
∑
c∈G∪B

ξc

bc∑
i=0

bc−i∑
j=0

(
bc
i

)(
bc − i
j

)
αi · βj · γbc−i−j · x2i+j+ac .

Let P |∗φ = P |φ mod (xq − x). Denote by [xs]P |∗φ the coefficient of xs in P |∗φ.

By Lucas’ Theorem (see Lemma 1), we have

[xs]P |∗φ =
∑
c∈G∪B

∑
i62bc, j62bc−i

2i+j+ac (mod∗ q)=s

ξc · αi · βj · γbc−i−j .

For s > d, the (Φ, d)∗-good monomials do not contribute to these coefficients
(see Definition 2), therefore,

[xs]P |∗φ=
∑
c∈B

∑
i62bc,j62bc−i

2i+j+ac (mod∗ q)=s

ξc · αi · βj · γbc−i−j for s > d. (3)

We view [xs]P |∗φ as a trivariate polynomial in α, β, γ. Note that P is (Φ, d)∗-
good only if

[xs]P |∗φ (α, β, γ) = 0 , ∀α, β, γ ∈ Fq,∀s > d . (4)

Now consider two bad monomials xacybc and xadybd with c, d ∈ B. Then
the corresponding terms in (3) contributed by them can be added up only if
αicβjcγbc−ic−jc = αidβjdγbd−id−jd , which is true if and only if

⇐⇒


ic = id
jc = jd
bc − ic − jc = bd − id − jd
2ic + jc + ac (mod∗ q) = 2id + jd + ad (mod∗ q)

=⇒

{
bc = bd
|ac − ad| = 0 or q − 1 .

For the case |ac − ad| = q− 1, such polynomials are bad according to Lemma 4.
For the case |ac− ad| = 0, we can conclude that the monomials αiβjγbc−i−j are
distinct for different pairs of (ac, bc). Namely, (3) is in its simplest form6.

Assume B is non-empty. Since ξc 6= 0 for all c, (3) is a non-zero polynomial.
By Lemma 2, since the variables α, β, γ ∈ Fq and all exponents i, j, bc− i−j < q,
there exists some α0, β0, γ0 ∈ Fq, such that [xs]P |∗φ 6= 0. This contradicts the

assumption that P is (Φ, d)∗-good. This implies that (4) can be fulfilled only if

6 No similar terms can be further combined.
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[xs]P |∗φ is a zero polynomial, i.e., B is empty. Hence, a polynomial P is (Φ, d)∗-
good only if it only consists of good monomials. ut

3.2 Estimation of the Dimension

In this section we provide an analysis of the dimension of QC-LRS codes
Cq(Φ, d = q − r), where q = 2` and r ∈ [q − 1]. Recall from Lemma 3 that a
monomial m(x, y) = xayb is (Φ, q − r)∗-bad if and only if there exist i 62 b
and j 62 b − i such that 2i + j + a (mod∗ q) > q − r. We will first consider a
slightly different definition of a bad monomial to simplify our arguments. Then,
we derive upper and lower bounds on the number of (Φ, q − r)∗-bad monomials
and further establish the results on the rate of QC-LRS codes.

Counting (Φ, q − r)-bad monomials: Let q = 2` and r ∈ [q − 1]. We say
that a monomial m(x, y) = xayb (or the pair (a, b)) is (Φ, q − r)-bad if and only
if there exist i 62 b and j 62 b− i such that 2i+ j + a (mod q) > q − r. For an
integer t > 0, we define

St(`) =

{
(a, b) ∈ Z2

q :
∃ i 62 b, j 62 b− i,
s.t. 2i+ j + a = q − r′ + tq, for some r′ ∈ [r]

}
(5)

For 1 6 r < q and t > 3, the set St(`) is empty as 2i + j + a 6 i + b +
a 6 2b + a 6 3(q − 1) < q − r + tq. Hence, if xayb is (Φ, q − r)-bad, then
(a, b) ∈ S0(`) ∪ S1(`) ∪ S2(`).

In what follows, we assume that 1 6 r < q and attempt to derive some recur-
sive relations on S0(`), S1(`) and S2(`). We have two observations in Lemma 5
and Lemma 6.

Lemma 5. Let q = 2` and r < q
2 , a = (a0, . . . , a`−1)2 and b = (b0, . . . , b`−1)2.

Define a′ := (a0, . . . , a`−2)2 and b′ := (b0, . . . , b`−2)2. If (a, b) ∈ S0(`) ∪ S1(`) ∪
S2(`), then (a′, b′) ∈ S0(`− 1) ∪ S1(`− 1) ∪ S2(`− 1).

Lemma 6. For t = 1, 2, if (a, b) ∈ St(`), then (a, b) ∈ St−1(`).

It follows from Lemma 6 that xayb is (Φ, q−r)-bad if and only if (a, b) ∈ S0(`).
Based on the observations in Lemma 6 and Lemma 5, we provide a recursive

formula for computing the size of St(`) for t = 0, 1, 2.

Lemma 7. For 1 6 r < q
2 , it holds that

|S0(`)| = 3|S0(`− 1)|+ |S1(`− 1)|,
|S1(`)| = |S0(`− 1)|+ |S1(`− 1)|+ |S2(`− 1)|,
|S2(`)| = |S2(`− 1)|.

Lemma 7 yields a recurrence relation for |S0(`)|, |S1(`)| and |S2(`)|. For a
given r, the initial value `0 should be chosen such that Si(`0), i = 0, 1, 2 is a valid
set according to the definition in (5). Denote by s(`) = (|S0(`)|, |S1(`)|, |S2(`)|)>.
We then have

s(`) = A`−`0 · s(`0), where A =

3 1 0
1 1 1
0 0 1

 . (6)
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The recursion enables us to find the asymptotic behavior of the number of (Φ, q−
r)-bad monomials, which is exactly |S0(`)|. Note that the order of |Sj(`)|, j =

0, 1, 2 is controlled by λ`1, where λ1 = 2+
√

2 is the largest eigenvalue of A in (6).
Hence,

|S0(`)| = Θ((2 +
√

2)`). (7)

For different r, the exact values of |S0(`)| can be different, since the initial value
|S0(`0)| depends on r. However, the asymptotic behavior is the same for any
fixed r.

We provide the exact expressions of |S0(`)| for r = 1 and r = 3, denoted by

|S(1)
0 (`)| and |S(3)

0 (`)| respectively, which we will later use to derive upper and
lower bound on the number of (Φ, q − r)∗-bad monomials:

|S(1)
0 (`)| = 5

√
2 + 7

2(3
√

2 + 4)
· λ`1 +

5
√

2− 7

2(3
√

2− 4)
· λ`2

≈0.8536 · λ`1 + 0.1464 · λ`2 (8)

|S(3)
0 (`)| = 65

√
2 + 92

4(12
√

2 + 17)
· λ`1 +

65
√

2− 92

4(12
√

2− 17)
· λ`2 − λ`3

≈1.3536 · λ`1 + 0.6465 · λ`2 − 1 (9)

where λ1 = 2 +
√

2, λ2 = 2−
√

2, λ3 = 1 are the three distinct eigenvalues of the
matrix A.

Counting (Φ, q− r)∗-bad monomials: For q = 2` and 1 6 r < q, we define
the following set

S∗(`) :=

{
(a, b) ∈ Z2

q :
∃ i 62 b, j 62 b− i, s.t. 2i+ j + a = q − r′ + t(q − 1),

for some r′ ∈ [r], t > 0

}
.

It is clear that (a, b) ∈ S∗(`) if and only if xayb is (Φ, q − r)∗-bad.
We first relate the value |S∗(`)| to |S0(`)| in Lemma 8 and Lemma 9.

Lemma 8. Let ` > 2, q = 2`, 1 6 r 6 q
4 , s = dlog2(r)e and q′ = 2`−s. Denote

by S
(3)
0 (`− s) the set of (a, b) such that xayb is (Φ, q′ − 3)-bad. Then

|S∗(`)| < 4r2 · |S(3)
0 (`− s)|.

If r is a power of 2, then

|S∗(`)| 6 r2 · |S(3)
0 (`− s)|.

Lemma 9. Let ` > 1, q = 2`, 1 6 r 6 q
2 , s = blog2 rc and q′ = 2`−s. Denote by

S
(1)
0 (`− s) the set of (a, b) such that xayb is (Φ, q′ − 1)-bad. Then

|S∗(`)| > r2

4
· |S(1)

0 (`− s)| .

If r is a power of 2, then

|S∗(`)| > r2 · |S(1)
0 (`− s)| .

In the following theorem we provide the exact expressions of upper and lower
bounds on |S∗(`)|), using the exact expression of |S0(`)| in (8) and (9).
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Theorem 2. Let ` > 2, q = 2`, 1 6 r 6 q
4 and s = log2 r, the number of

(Φ, q − r)∗-bad monomials is

0.8536 · λ`−bsc1 + 0.1464 · λ`−bsc2

4
<
|S∗(`)|
r2

< 4(1.3536 · λ`−dse1 + 0.6465 · λ`−dse2 − 1) ,

where λ1 = 2 +
√

2 and λ2 = 2−
√

2.
If r is a power of 2, we obtain

0.8536 · λ`−s1 + 0.1464 · λ`−s2 6
|S∗(`)|
r2

6 1.3536 · λ`−s1 + 0.6465 · λ`−s2 − 1 .

We can then derive an asymptotic behavior of the rate of QC-LRS codes
in Corollary 1.

Corollary 1. Let µ = log2(2 +
√

2). For q →∞ and 1 6 r 6 q
4 , the number of

(Φ, q − r)∗-bad monomials is

|S∗(`)| = Θ(r2−µqµ) .

Further, the QC-LRS code Cq(Φ, q − r) has rate

R = 1−Θ
(
(q/r)µ−2

)
= 1−Θ

(
(q/r)−0.2284

)
.

For an illustration, we plot in Fig. 1 the dimension of the code Cq(Φ, q − r)
with q = 25, which is done by computer-search according to the necessary and
sufficient condition in Lemma 3, and the corresponding lower and upper bounds
for r ∈ [1, q/4] based on the bounds on |S∗(`)| in Theorem 2.

2 4 6 8 10 12 14 16

32−0.5

320

Local Redundancy r∗

R
at

e
of

Q
C

-L
R

S
co

d
es

rate ` = 5

rate (ub) ` = 5

rate (lb) ` = 5

Fig. 1: The dimension of QC-LRS code Cq(Φ, q − r) with q = 25 along with the
corresponding upper bound (ub) and lower bound (lb) for r ∈ [1, q/4] calculated
by 1−|S∗(`)|/q2. The lower and upper bound on |S∗(`)| are given in Theorem 2.

Remark 1. Recall that the rate of bivariate lifted Reed-Solomon (LRS) codes is
R = 1−Θ((q/r)log2 3−2 = 1−Θ((q/r)−0.4150) [6]. We compare the performance
of our codes with LRS codes in terms of local recovery in an erasure channel
in Section 4.

3.3 Distance of Quadratic-Curve-Lifted RS Codes

We provide the upper and lower bounds on the distance of the QC-LRS codes
Cq(Φ, q − r) in the following theorem.
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Theorem 3 (Bounds on the Minimum Distance). Let q be a power of 2
and Φ be the set of all quadratic functions. The QC-LRS code Cq(Φ, q − r) has
minimum distance

qr + 1 6 dist(Cq(Φ, q − r)) 6 qr + q .

Proof. The upper bound is proven by counting the number of zeros in the code-
word f(x, y) =

∏
α∈A(x−α), where A is a subset of Fq with |A| = q−r−1. The

lower bound is proven by considering the minimum number of non-zero positions
in all disjoint local groups (e.g., all lines) of a non-zero symbol in a codeword.
For a detailed proof we refer to the full version of this paper [11].Note that the
bounds are derived in a similar method as for LRS codes in [4, Theorem 5.1]. ut

4 Local Recovery Capability from Erasures

For a code with locality [15], the local groups of a codeword symbol are
defined as the sets of indices where the symbol can be recovered by accessing
only the symbols in one of the sets. Given a QC-LRS code over Fq, the number
of local recovery sets of any codeword symbol is the number of quadratic curves
over Fq passing through a certain point, which is q2. For an LRS codes, the
number of local recovery sets is q+ 1. Consider an erasure channel with erasure
probability τ . With respect to the local recovery, we are interested in correcting a
certain erasure within a local recovery set and how large the failure probabilities
of LRS/QC-LRS codes is. The failure probability is exactly the probability that
there are at least r other erasures in each local recovery set of the erased symbol
to be recovered. For LRS codes, since all the local recovery sets are disjoint,

the failure probability is exactly
(∑q−1

i=r

(
q−1
i

)
τ i(1− τ)q−1−i

)q+1

. For QC-LRS

codes, since the local recovery sets may intersect with each other, an analysis
for the closed form of the failure probability is still an open problem. In order
to compare the performance of these two codes, we run simulations with both
codes of length n = 64, dimension k = 10 and k = 6, respectively. The simulation
results are presented in Fig. 2. We can see that for both dim = 10 and dim = 6,
the failure probability of local recovery with QC-LRS is smaller than or similar
to that with LRS codes for τ 6 0.7. Therefore, for this length, QC-LRS codes
perform better than LRS for local recovery.
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12. López, H.H., Malmskog, B., Matthews, G.L., Piñero-González, F., Wootters, M.:
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