
Secure Private and Adaptive Matrix Multiplication
Beyond the Singleton Bound

Christoph Hofmeister, Rawad Bitar, Marvin Xhemrishi, and Antonia Wachter-Zeh

Institute for Communications Engineering, Technical University of Munich, Munich, Germany
christoph.hofmeister, rawad.bitar, marvin.xhemrishi,

antonia.wachter-zeh@tum.de

Abstract. Consider the problem of designing secure and private codes for dis-
tributed matrix multiplication. This work is motivated by the literature on myopic
adversaries in network coding. Security beyond the Singleton bound is possible
when the adversary has limited knowledge about the master’s data and probabilis-
tic decoding is acceptable. The key observation in this setting is that the master
is the sender and the receiver; thus has a plethora of advantages that enable cod-
ing for security beyond the Singleton bound. We design a framework for security
against malicious adversaries in private matrix-matrix multiplication. We apply
this security framework to schemes with adaptive rates that divide the workers
into clusters and thus provide flexibility in trading decoding complexity for effi-
ciency. Our new scheme, called SRPM3, provides a computationally efficient se-
curity check that detects malicious workers with high probability and can tolerate
the presence of an arbitrary number of malicious workers. We provide simulation
results that validate our theoretical findings. Proofs and additional explanation
can be found in [1].

1 Introduction

Motivated by distributed machine learning, we consider the core computation of matrix-
matrix multiplication. Due to the tremendous amount of data being collected and pro-
cessed, computing the matrix multiplication locally is becoming a bottleneck. Dis-
tributed computing emerged as a solution to alleviate the computation bottleneck. A
master node possessing the matrices splits them into smaller chunks sent to worker
nodes. The workers compute the smaller matrix multiplications in parallel and return
the results to the master. The master aggregates the results received from the workers to
obtain the initial desired computation. The main challenges of distributed computing,
which we focus on, are: stragglers, privacy and security.

Some workers, referred to as stragglers, may be significantly slower than others [2,
3], thus outweighing the benefits of parallelising the computation [4–6]. Given the sen-
sitivity of the data used for machine learning algorithms, e.g., genomes and medical
data, privacy against potential eavesdroppers is a must. We are interested in information-
theoretic privacy of both input matrices, where a limited subset of workers with un-
bounded computational power are eavesdroppers. In addition, some of the workers are
malicious and deliberately send corrupted computation to the master aiming to corrupt

the whole computation process. When coding is used, for example to mitigate strag-
glers or to guarantee privacy, one malicious worker can corrupt the whole computation
if care is not taken.

We are interested in a heterogeneous and time-varying setting. The response time
of the workers is different and varies over time. Examples of such applications include
edge computing and internet of things (IoT) networks in which small devices collabo-
rate to run intensive computations.

Related work: Coding for straggler mitigation witnessed a significant attention from
the scientific community. Using codes provides fast, private and reliable distributed
computing, see e.g., [6–14], and the survey [15]. Information-theoretic privacy and
straggler mitigation in coded computing is achieved by using secret sharing, see e.g., [16–
23], and the survey [24]. Security against malicious workers is considered in [25–29].
The works of [25,26] design codes in which each malicious worker can inflict a double
damage. This idea holds through the Singleton-bound for distributed storage, network
coding and MDS codes. It has been shown for network coding and distributed stor-
age [30–34] that when the malicious workers have limited knowledge about the mas-
ter’s data, the master can half the damage of the malicious workers with high probabil-
ity. The advantage of distributed computing is that the master can be seen as the sender
and the receiver. The master can thus alleviate the assumption of limited knowledge
of the malicious workers. In [27] secure matrix-vector multiplication in heterogeneous
environments is ensured by using homomorphic hash functions. The master detects the
malicious workers with high probability and removes them from the system. In [28,29]
variants of Reed-Solomon codes are used to half the damage of the malicious workers
when the workers introduce random noise and when the workers introduce any kind
of noise, respectively. The disadvantage of [29] is the high computational complexity
incurred by the master. Concurrently and independently of our work, the authors of [35]
present a scheme to tolerate malicious workers in coded computing with low compu-
tational complexity. The ideas used in [35] are similar to the ideas used in this work.
However, [28, 29, 35] consider security in settings where the workers are assumed to
have similar resources. In addition, a maximum amount of stragglers is assumed.

Contributions: We introduce SRPM3, secure rateless and private matrix-matrix mul-
tiplication, scheme. SRPM3 allows the master to offload a matrix-matrix multiplication
to workers that are malicious, curious (eavesdropper) and have different time-varying
resources. In contrast to most coding theoretic frameworks, SRPM3 can tolerate the
presence of an arbitrary number of malicious workers and still detect corruption of
computation efficiently and with high probability. SRPM3 is based on RPM3 scheme
introduced by a subset of the authors [18]. Similarly to RPM3, SRPM3 works in rounds.
In each round, the master divides the workers into clusters of workers that have similar
resources, i.e., similar service time. The additional component of SRPM3 is a com-
putation efficient verification of matrix-matrix multiplication based on Freivald’s algo-
rithm [36]. The verification of the computation is done per cluster. The master can thus
verify with high probability whether the computation returned from each cluster is cor-
rupted. Verifying the computation per clusters results in a more efficient verification
than the scheme presented in [35]. As an extra layer of verification, if the computation
of a certain cluster of workers is corrupted, the master can run Freivald’s algorithm on

the computation of each worker to detect, with high probability, the malicious workers
and use the results of the honest workers.

2 Preliminaries

Notation For any positive integer a we define [a] , {1, . . . , a}. We denote by n the
total number of workers. For i ∈ [n] we denote worker i by wi. For a prime power q,
we denote by Fq the finite field of size q. We denote vectors by bold letters, e.g., a and
matrices by bold capital letters, e.g., A. Random variables are denoted by typewriter
characters, e.g., A. Calligraphic letters are used for sets, e.g., A. We denote by H(A)
the entropy of the random variable A and by I(A;B) the mutual information between
two random variables A and B. All logarithms are to the base q.

Problem setting A master node wants to multiply two private matrices A ∈ Fr×sq and
B ∈ Fs×`q to obtain C = AB ∈ Fr×`q . The matrices A and B are assumed to be
uniformly distributed over their respective fields. To alleviate the computation com-
plexity, the master offloads the computation to n workers. We consider an untrusted
heterogeneous and time-varying environment in which the workers satisfy the follow-
ing properties: 1) The response time of the workers is different. The workers can be
grouped into c > 1 clusters of workers that have similar response time. We denote by
nu, u = 1, . . . , c, the number of workers in cluster u and require that

∑
u∈[c] nu = n.

2) The response time of the workers can change during the multiplication process.
Therefore, the clustering can also change throughout the multiplication of A and B.
3) The workers have small memory and limited computational capacity.
4) Up to z, 1 ≤ z < min

u∈[c]
nu, workers collude to eavesdrop on A and/or B. If z = 1,

we say the workers do not collude.
5) Workers are malicious. An arbitrary subset of the workers may collaboratively send
noisy computations to the master to corrupt the whole computation process. Despite
their collaboration to jam the computation, we assume that at most up to z malicious
workers share information about A and B with each other, i.e., are colluding. This
model is motivated by different malicious parties having interest in not allowing the
master to successfully compute the matrix multiplication. However, those parties are
themselves competing in learning information about the private matrices for their own
benefit.

A is divided into m equally sized blocks of rows and B is divided into k equally
sized blocks of columns1 such that Ci,j = AiBj , i ∈ [m], j ∈ [k]. The master encodes
and sends tasks to the workers until it can decode C based on the responses. Each task
is of equivalent computational cost as computing one of the sub-matrices Ci,j . The
number of responses necessary for decoding depends on the scheme.

A scheme guarantees double-sided z-privacy in an information-theoretic sense if
any collection of z colluding workers learns nothing about the input matrices A and B.
Such a scheme is said to be double-sided z-private as defined next. We introduce some

1 It is assumed, that m|r and k|l. These conditions can always be fulfilled by padding A with
up to m− 1 rows and/or B with up to k − 1 columns.

notation first. Let A and B be the random variables representing A and B. The set of ran-
dom variables representing the collection of tasks assigned to worker wi, i = 1, . . . , n
is denoted by Wi. For a set A ⊆ [n] we define WA as the set of random variables
representing all tasks assigned to the workers indexed by A, i.e.,WA = {Wi|i ∈ A}.
Definition 1 (Double-sided z-private scheme, [18]). A scheme is said to be double-
sided z-private if the following privacy constraint holds

I (A,B;WZ) = 0,∀Z ⊂ [n], s.t. |Z| = z. (1)

Definition 2 (Probabilistic decoding). In this work we relax the decoding constraint
from deterministic decoding to probabilistic decoding. Let Ri be the set of random
variable representing all the computational results of wi received at the master. Let C
be the random variable representing the matrix C. The decodability constraint can be
expressed as

H (C|R1, . . . ,Rn) < ε, (2)

where ε > 0 is arbitrarily small. Deterministic decoding requiresH (C|R1, . . . ,Rn) = 0.

Note that the sets Ri can be of different cardinality, and some may be empty, re-
flecting the heterogeneity of the system and the straggler tolerance.

3 SRPM3 Scheme

SRPM3 is based in large parts on the RPM3 scheme presented in [18] by a subset of the
authors. We briefly explain the common aspects of RPM3 and SRPM3. More details
about the scheme and its metrics of interest can be found in [18,19]. The additional part
on the adversarial error detection is elaborated in the next section.

The matrix multiplication process is divided into rounds and for every round the
workers are grouped into clusters. All workers start in round t = 1. Every time a cluster
of workers completes a task, it is advanced one round.

Encoding A factored fountain code [12] encodes {A1, . . . ,Am} into {Ã1, Ã2, . . . }
and {B1, . . . ,Bk} into {B̃1, B̃2, . . . }. Using a factored fountain code ensures that
C̃1 , Ã1B̃1, C̃2 , Ã2B̃2, . . . are the symbols of a fountain code encoding {Ci,j |i ∈
[m], j ∈ [k]}. The maximum number of fountain coded sub-matrices of C that cluster
u, consisting of nu workers, can compute in a round is given by

du ≤

{
bn1−2z+1

2 c for u = 1

bnu−z+1
2 c otherwise.

(3)

Choosing du smaller than the upper bound increases the straggler tolerance of the clus-
ter. Specifically, decreasing du by two increases the straggler tolerance of cluster u by
one. We define dmax the maximum du in a round, i.e., dmax , max

u∈[c]
du.

At the start of a round t the master does the following: i) chooses dmax+z+n distinct
elements {αt,1, . . . , αt,dmax+z, βt,1, . . . , βt,n} of Fq uniformly at random2; and ii) draws

2 Note that in the original RPM3 scheme α1, . . . , αdmax+z, β1, . . . , βn are considered fixed
and publicly known parameters of the scheme. In SRPM3, they are generated randomly for
each round and are private to the master.

2z matrices {Rt,1, . . . ,Rt,z} and {St,1, . . . ,St,z} independently and uniformly at ran-
dom from Fr/m×sq and Fs×l/kq , respectively. Then, for each cluster the master computes
the fountain coded matrices {Ã(u)

t,1 , . . . , Ã
(u)
t,du
} and {B̃(u)

t,1 , . . . , B̃
(u)
t,du
} and computes

the following two Lagrange polynomials of degree du + z − 1

F
(u)
t (x) =

z∑
i=1

li(x)Rt,i +

z+du∑
i=z+1

li(x)Ãt,i−z,

G
(u)
t (x) =

z∑
i=1

li(x)St,i +

z+du∑
i=z+1

li(x)B̃t,i−z,

where for every i ∈ [z + du], li(x) =
∏
j∈[du+z]\{i}

x−αt,j

αt,i−αt,j
is the Lagrange basis

polynomial satisfying li(αt,i) = 0 and li(αt,j) = 1 for all j ∈ [z + du] \ {i}. Conse-
quently, for all i = 1, . . . , z, and j = z+1, . . . , z+du it holds that F(u)

t (αt,i) = Ri and
F

(u)
t (αt,j) = Ãy,j−z . The same holds for G(u)

t (x). Define the polynomial H(u)
t (x) ,

F
(u)
t (x)G

(u)
t (x); this polynomial evaluates to C̃t,1 = Ãt,1B̃t,1, . . . , C̃t,du = Ãt,duB̃t,du

at αt,z+1, . . . , αt,z+du , respectively.
The master sends F(u)

t (βt,i) and G
(u)
t (βt,i) as a computational task to worker wi in

cluster u. Each worker computes and returns H(u)
t (βt,i) = F

(u)
t (βt,i)G

(u)
t (βt,i).

Decoding The degree of H
(u)
t (x) is 2du + 2z − 2. Recall from (3) that for cluster

u = 1, the number of workers n1 satisfies n1 ≥ 2d1 + 2z − 1. Hence, after obtaining
2d1 + 2z − 1 responses from cluster u = 1, the master can interpolate H

(1)
t (x). By

design of H(u)
t (x) it holds that H(1)

t (αt,i) = H
(2)
t (αt,i) = · · · = H

(c)
t (αt,i) = Rt,i

for all i = 1, . . . , z. Thus, the master needs only 2du + z − 1 response from each
cluster u > 1 to interpolate H

(u)
t (x). Evaluating H

(u)
t (x) at each of αt,z+1, . . . , αt,du

produces {C̃(u)
t,1 , . . . , C̃

(u)
t,du
}.

At this point, the security check described in Section 4 is performed. If the security
check passes, the master feeds the fountain coded matrices C̃(u)

t,i into a peeling decoder
[37]. The scheme is finished when all the Ci,j’s are decoded by the peeling decoder.

Clustering In the first round, all workers are assigned to a single cluster. Over the course
of the computation, the master measures the empirical response time of the workers and
updates the clustering such that workers with similar response time are assigned to the
same cluster. For t > 1 the number of workers per cluster must satisfy n1 ≥ 2z+1 and
nu ≥ z + 1 for all other clusters; if at least one fountain coded sub-matrix of C shall
be decoded from each cluster.

4 Adversarial Error Detection

Error Detection in Matrix-Matrix Multiplication Freivalds’ algorithm (Algorithm 1)
[36] is an efficient way to verify the correctness of a single matrix-matrix multiplication

Algorithm 1: Freivalds’ algorithm.
Input : X1 ∈ Fr×s

q , X2 ∈ Fs×l
q , X3 ∈ Fr×l

q

Result: True or False
ν ← uniformly random vector from Fl

q;
if X1X2ν = X3ν then

return True;
else

return False;
end

with high probability. Freivalds’ algorithm is based on the fact that for X1 ∈ Fr×sq ,
X2 ∈ Fs×lq and X3 ∈ Fr×lq , if X1X2 = X3, then X1X2ν = X3ν holds for all
possible ν ∈ Flq . Consequently if X1X2 = X3, then Algorithm 1 always returns True.
On the other hand, if X1X2 6= X3, the algorithm returns False with probability at
least 1 − 1

q [36, Theorem 3]. Freivalds’ algorithm probabilistically verifies the matrix-
matrix multiplication with only three matrix-vector multiplications: ν′ , X2ν, X1ν

′

and X3ν. This is in contrast to re-computing X1X2 and deterministically verifying the
computation.

Error Detection in Polynomial Multiplication A polynomial multiplication can be ver-
ified similarly [36]. Consider three polynomials p1(x), p2(x) and p3(x) over a field
Fq with p1(x)p2(x) 6= p3(x) and deg(p1(x)p2(x)) ≥ deg(p3(x)). For an evalua-
tion point γ drawn uniformly at random from a subset S ⊆ Fq , the probability that
p1(γ)p2(γ) = p3(γ) is at most deg(p1(x)p2(x))

|S| by the Schwartz-Zippel lemma [38, 39].

Adversarial Error Detection in SRPM3 We combine the methods for error detection
in matrix-matrix multiplications and polynomial multiplications to efficiently verify
that the multiplication of polynomial matrices H

(u)
t (x) = F

(u)
t (x)G

(u)
t (x) is correct

in every cluster u ∈ [c]. Theorem 1 summarizes the main result of adversarial error
detection in SRPM3.

Theorem 1. For every cluster u ∈ [c] and for every round t of SRPM3, given three

polynomial matrices H(u)
t (x) ∈ F

r
m×

`
k

q , F(u)
t (x) ∈ F

r
m×s
q and G

(u)
t (x) ∈ Fs×

`
k

q such
that H(u)

t (x) 6= F
(u)
t (x)G

(u)
t (x), the probability that Algorithm returns True when

applied to these polynomial matrices is bounded from above by

Pr
(

Algorithm 1 returns True|H(u)
t (x) 6= F

(u)
t (x)G

(u)
t (x)

)
≤ deg(H

(u)
t (x))

q − deg(H
(u)
t (x))− 1

.

The probability of SRPM3 not detecting an error in cluster u ∈ [c] for every round
t is bounded from above as in (4) even if all nu workers collaborate on the attack.

Pr(SRPM3 not detecting an error) ≤ deg(H
(u)
t (x))

q − deg(H
(u)
t (x))− 1

+
1

q
. (4)

The complexity of the verification is O
(
rs
m + s`

k + r`
mk

)
; which is O

(
r2

mk

)
if r, s

and ` scale together.

The proof of Theorem 1 is omitted and can be found in [1].

Remark 1. If the privacy does not hold, i.e., if more than z workers collude and we
cannot guarantee, that α1, . . . , αz+du , β1, . . . , βn are private from the malicious work-
ers, then the scheme can be modified slightly in order to still guarantee that errors are
detected with high probability. It can be shown that the probability of not detecting an

error in a round of this modified scheme is at most deg(H
(u)
t (x))
q + 1

q . The modified
scheme has higher computational cost, see [1] for a detailed discussion.

Remark 2. In the proposed version of SRPM3, we run Algorithm 1 once per cluster.
However, the algorithm can be modified to the following. An additional amount of
bu > 0 workers is added to cluster u such that nu ≥ 2du + z + bu − 1 for u > 1 and
n1 ≥ 2du+2z+b1−1. If Algorithm 1, run on the polynomials, detects an error in cluster
u, the master runs Algorithm 1 for each worker to detect the malicious workers. Those
workers are removed from the system. Moreover, if at most bu workers are malicious,
the master uses the results from the remaining workers to interpolate H

(u)
t (x).

A key difference between SRPM3 and the work of [35] is that the scheme in [35]
verifies each individual worker, hence adding computational complexity to the scheme.

5 Simulation Results

Rate of Missed Detection We simulated two possible attack strategies that can be run by
the malicious workers. For each strategy, we measured the number of times the master
does not detect the errors introduced by the workers, cf. Figure 1. The rate of missed
detection is the ratio of the number of times the master does not detect the error to the
total number of times the computation is simulated. All simulations are considered per
one cluster of workers. We consider the following attack strategies.

1. Single rank–1 error: A single worker adds a random rank–1 matrix to the result.
From the analysis of Algorithm 1, rank–1 matrices are the hardest to detect [1].

2. Coordinated rank–1 errors: Every worker adds a random rank–1 matrix to the re-
sult. All of the added matrices are linearly dependent which makes the error detec-
tion harder for the master.

We plot in addition the upper bound on the probability of missed detections given
in Theorem 1. Simulation results validate that rank–1 errors have the highest probabil-
ity of not being detected by Algorithm 1. Further, they show that our upper bound of
Theorem 1 is a loose bound for the probability of missed detection.

Computational Overhead We plot in Figure 2 the ratio of CPU times for the security
check to that spent for encoding and decoding the Lagrange polynomials in the first
cluster of a round over the cluster size n1. The simulations were performed with a large
prime field (the largest prime less than 262).

102 103 104 105

10−5

10−3

10−1

field size q

m
is

se
d

de
te

ct
io

n
ra

te

upper bound

coordinated rank 1 error

single rank 1 error

Fig. 1: Rate of missed detections in the
first cluster consisting of nu = 100
workers of a round with r = s = l =
10 in one million rounds.

4 64 1024

10−7

10−6

10−5

10−4

Cluster Size nu

se
cu

ri
ty

ch
ec

k
tim

e
/c

od
in

g
tim

e r = s = l = 4

r = s = l = 16

r = s = l = 64

Fig. 2: Ratio of CPU time spent for the
security check to CPU time spent for
encoding/decoding the Lagrange poly-
nomials for one cluster.

Computational complexity of encoding and decoding with an FFT based algorithm
for interpolation and evaluation is O

((
rs
m + s`

k + r`
mk

)
n1 log

2 n1
)

as described in [40,
Chapter 11], whereas the complexity of the security check isO

(
rs
m + s`

k + r`
mk

)
. Simu-

lation results validate our theoretical findings by showing that the computational cost of
verifying the correctness of the computations is minimal compared to the computational
cost of the rest of the scheme. In addition, simulations show that the computational over-
head of the security check decreases when increasing nu. Note that the field size can be
reduced at the expense of repeating the security check multiple times [1].

6 Conclusion

We considered a heterogeneous and time-varying setting of secure and private dis-
tributed matrix-matrix multiplication. We introduced SRPM3, a new scheme that al-
lows a master to offload matrix-matrix multiplications to malicious, curious and hetero-
geneous workers. In contrast to distributed matrix-matrix multiplication schemes based
on coding theory, SRPM3 tolerates the presence of an arbitrary number of malicious
workers. The efficiency of the scheme is increased by grouping the workers in clusters
and verifying the computation of the whole cluster at once. As an extra layer of security,
for a cluster where an error is detected, the master can run Freivald’s algorithm on the
results sent by each worker to detect the malicious workers and remove them from the
system. Furthermore, redundant workers can be added per cluster so that the master can
use the results sent by honest workers of each cluster.

References

1. C. Hofmeister, R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Secure private and adaptive
matrix multiplication beyond the singleton bound,” arXiv preprint arXiv:2108.05742, 2021.

2. J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2,
pp. 74–80, 2013.

3. J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang,
Q. V. Le, et al., “Large scale distributed deep networks,” in Advances in neural information
processing systems, pp. 1223–1231, 2012.

4. G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective straggler mitigation:
Attack of the clones,” in Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pp. 185–198, 2013.

5. G. Liang and U. C. Kozat, “Fast cloud: Pushing the envelope on delay performance of cloud
storage with coding,” IEEE/ACM Transactions on Networking, vol. 22, no. 6, pp. 2012–2025,
2014.

6. K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up dis-
tributed machine learning using codes,” IEEE Transactions on Information Theory, vol. 64,
no. 3, pp. 1514–1529, 2017.

7. E. Vedadi and H. Seferoglu, “Adaptive coding for matrix multiplication at edge networks,”
arXiv preprint arXiv:2103.04247, 2021.

8. A. Mallick, M. Chaudhari, and G. Joshi, “Rateless codes for near-perfect load balancing in
distributed matrix-vector multiplication,” arXiv preprint arXiv:1804.10331, 2018.

9. A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded computation over
heterogeneous clusters,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp. 4227–
4242, 2019.

10. Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix
multiplication: Fundamental limits and optimal coding,” IEEE Transactions on Information
Theory, vol. 66, no. 3, pp. 1920–1933, 2020.

11. Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-aware coded coop-
erative computation at the edge,” in IEEE 26th International Conference on Network Proto-
cols (ICNP), pp. 23–33, 2018.

12. A. K. Pradhan, A. Heidarzadeh, and K. R. Narayanan, “Factored LT and factored raptor
codes for large-scale distributed matrix multiplication,” CoRR, vol. abs/1907.11018, 2019.

13. P. Peng, E. Soljanin, and P. Whiting, “Diversity vs. parallelism in distributed computing with
redundancy,” in IEEE International Symposium on Information Theory (ISIT), pp. 257–262,
2020.

14. A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal and LT codes for dis-
tributed computing with straggling servers,” IEEE Transactions on Communications, vol. 67,
no. 3, pp. 1739–1753, 2019.

15. S. Li and S. Avestimehr, “Coded computing,” Foundations and Trends® in Communications
and Information Theory, vol. 17, no. 1, 2020.

16. R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure coded computing
using secret sharing via Staircase codes,” IEEE Transactions on Communications, 2020.

17. R. G. D’Oliveira, S. El Rouayheb, and D. Karpuk, “GASP codes for secure distributed matrix
multiplication,” IEEE Transactions on Information Theory, vol. 66, no. 7, pp. 4038–4050,
2020.

18. R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Rateless codes for private distributed matrix-
matrix multiplication,” in IEEE International Symposium on Information Theory and its Ap-
plications (ISITA), 2020.

19. R. Bitar, M. Xhemrishi, and A. Wachter-Zeh, “Adaptive private distributed matrix multipli-
cation,” pp. 1–1, 2022.

20. R. Bitar, Y. Xing, Y. Keshtkarjahromi, V. Dasari, S. El Rouayheb, and H. Seferoglu, “Private
and rateless adaptive coded matrix-vector multiplication,” EURASIP Journal on Wireless
Communications and Networking, vol. 2021, no. 1, pp. 1–25, 2021.

21. H. Yang and J. Lee, “Secure distributed computing with straggling servers using polynomial
codes,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 1, pp. 141–
150, 2018.

22. J. Kakar, S. Ebadifar, and A. Sezgin, “On the capacity and straggler-robustness of distributed
secure matrix multiplication,” IEEE Access, vol. 7, pp. 45783–45799, 2019.

23. B. Hasircioglu, J. Gomez-Vilardebo, and D. Gunduz, “Bivariate polynomial codes for secure
distributed matrix multiplication,” arXiv preprint arXiv:2106.07731, 2021.

24. S. Ulukus, S. Avestimehr, M. Gastpar, S. Jafar, R. Tandon, and C. Tian, “Private re-
trieval, computing and learning: Recent progress and future challenges,” arXiv preprint
arXiv:2108.00026, 2021.

25. Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange
coded computing: Optimal design for resiliency, security, and privacy,” in The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1215–1225, 2019.

26. C.-S. Yang and A. S. Avestimehr, “Coded computing for secure boolean computations,”
IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 326–337, 2021.

27. Y. Keshtkarjahromi, R. Bitar, V. Dasari, S. El Rouayheb, and H. Seferoglu, “Secure coded co-
operative computation at the heterogeneous edge against byzantine attacks,” in IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, IEEE, 2019.

28. A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Collaborative decoding of
polynomial codes for distributed computation,” in IEEE Information Theory Workshop
(ITW), pp. 1–5, IEEE, 2019.

29. M. Soleymani, R. E. Ali, H. Mahdavifar, and A. S. Avestimehr, “List-decodable coded com-
puting: Breaking the adversarial toleration barrier,” arXiv preprint arXiv:2101.11653, 2021.

30. B. K. Dey, S. Jaggi, and M. Langberg, “Sufficiently myopic adversaries are blind,” IEEE
Transactions on Information Theory, vol. 65, no. 9, pp. 5718–5736, 2019.

31. S. Li, R. Bitar, S. Jaggi, and Y. Zhang, “Network coding with myopic adversaries,” in IEEE
International Symposium on Information Theory (ISIT), 2021.

32. Q. Zhang, S. Kadhe, M. Bakshi, S. Jaggi, and A. Sprintson, “Talking reliably, secretly, and
efficiently: A “complete” characterization,” in 2015 IEEE Information Theory Workshop
(ITW), pp. 1–5, IEEE, 2015.

33. J. Song, Q. Zhang, M. Bakshi, S. Jaggi, and S. Kadhe, “Multipath stealth communica-
tion with jammers,” in 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 761–765, IEEE, 2018.

34. R. Bitar and S. Jaggi, “Communication efficient secret sharing in the presence of malicious
adversary,” in IEEE International Symposium on Information Theory (ISIT), pp. 548–553,
IEEE, 2020.

35. T. Tang, R. E. Ali, H. Hashemi, T. Gangwani, S. Avestimehr, and M. Annavaram, “Verifi-
able coded computing: Towards fast, secure and private distributed machine learning,” arXiv
preprint arXiv:2107.12958, 2021.

36. R. Freivalds, “Fast probabilistic algorithms,” in Mathematical Foundations of Computer Sci-
ence 1979 (J. Bečvář, ed.), (Berlin, Heidelberg), pp. 57–69, Springer Berlin Heidelberg,
1979.

37. D. J. MacKay, “Fountain codes,” IEEE Proceedings-Communications, vol. 152, no. 6,
pp. 1062–1068, 2005.

38. J. T. Schwartz, “Fast probabilistic algorithms for verification of polynomial identities,” J.
ACM, vol. 27, p. 701–717, Oct. 1980.

39. R. Zippel, “Probabilistic algorithms for sparse polynomials,” in Symbolic and Algebraic
Computation (E. W. Ng, ed.), (Berlin, Heidelberg), pp. 216–226, Springer Berlin Heidel-
berg, 1979.

40. J. v. Zur Gathen, Modern computer algebra. Cambridge [u.a.]: Cambridge Univ. Press, 3.
ed. ed., 2013.

	Secure Private and Adaptive Matrix Multiplication Beyond the Singleton Bound

